q-differ-integral operator on p-valent functions associated with operator on Hilbert space

被引:0
作者
Najafzadeh, Shahram [1 ]
机构
[1] Payame Noor Univ, Dept Math, POB 19395 3697, Tehran, Iran
关键词
multivalent function; fractional q-derivative operator; fractional q-integral operator; Hilbert space; coefficient estimate; distortion bound; extreme point; convolution (or Hadamard product); ANALYTIC-FUNCTIONS; SUBCLASSES;
D O I
10.1007/s11766-023-3747-3
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Making use of multivalent functions with negative coefficients of the type f(z) = z(p) - Sigma(infinity)(zk)(k = p+1)(ak), which are analytic in the open unit disk and applying the q-derivative a q-differ-integral operator is considered. Furthermore by using the familiar Riesz-Dunford integral, a linear operator on Hilbert space H is introduced. A new subclass of p-valent functions related to an operator on H is defined. Coefficient estimate, distortion bound and extreme points are obtained. The convolution-preserving property is also investigated.
引用
收藏
页码:458 / 466
页数:9
相关论文
共 11 条
  • [1] On classes of analytic functions related to conic domains
    Al-Oboudi, F. M.
    Al-Amoudi, K. A.
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2008, 339 (01) : 655 - 667
  • [2] Al-Oboudi FM., 2004, Int. J. Math. Sci, V27, P1429, DOI DOI 10.1155/S0161171204108090
  • [3] Dunford N, 1958, Linear operators part I: general theory, P58
  • [4] ANALYTIC-FUNCTIONS OF A PROPER CONTRACTION
    FAN, K
    [J]. MATHEMATISCHE ZEITSCHRIFT, 1978, 160 (03) : 275 - 290
  • [5] Gasper G, 2004, Basic hypergeometric series, P66
  • [6] Jackson F.H., 1908, Trans. Roy. Soc. Edinburgh, V46, P253, DOI [10.1017/s0080456800002751, DOI 10.1017/S0080456800002751, 10.1017/S0080456800002751]
  • [7] Jasoria L., 2015, International Journal on Future Revolution in Computer Science and Communication Engineering, V3, P230
  • [8] Najafzadeh S., 2011, Acta Universitatis Apulensis, V27, P51
  • [9] Purohit SD, 2011, MATH SCAND, V109, P55
  • [10] SALAGEAN GS, 1983, LECT NOTES MATH, V1013, P362