Multi-pooling 3D Convolutional Neural Network for fMRI Classification of Visual Brain States

被引:0
作者
Zhang, Zhen [1 ]
Takeda, Masaki [2 ]
Iwata, Makoto [1 ]
机构
[1] Kochi Univ Technol, Sch Informat, Kami, Kochi, Japan
[2] Kochi Univ Technol, Res Ctr Brain Commun, Kami, Kochi, Japan
来源
2023 IEEE CONFERENCE ON ARTIFICIAL INTELLIGENCE, CAI | 2023年
关键词
fMRI classification; visual brain states; multipooling 3D convolutional neural network (MP3DCNN);
D O I
10.1109/CAI54212.2023.00057
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Neural decoding of visual object classification via functional magnetic resonance imaging (fMRI) data is challenging and is vital to understand underlying brain mechanisms. This paper proposed a multi-pooling 3D convolutional neural network (MP3DCNN) to improve fMRI classification accuracy. MP3DCNN is mainly composed of a three-layer 3DCNN, where the first and second layers of 3D convolutions each have a branch of pooling connection. The results showed that this model can improve the classification accuracy for categorical (face vs. object), face sub-categorical (male face vs. female face), and object sub-categorical (natural object vs. artificial object) classifications from 1.684% to 14.918% over the previous study [1] in decoding brain mechanisms.
引用
收藏
页码:118 / 119
页数:2
相关论文
共 8 条
[1]  
Ashburner J., 2014, Functional Imaging Lab-oratory Wellcome Trust Centre for Neuroimaging, P1
[2]   On the relationship between classical grid search and probabilistic roadmaps [J].
LaValle, SM ;
Branicky, MS ;
Lindemann, SR .
INTERNATIONAL JOURNAL OF ROBOTICS RESEARCH, 2004, 23 (7-8) :673-692
[3]   Resting State fMRI Functional Connectivity-Based Classification Using a Convolutional Neural Network Architecture [J].
Meszlenyi, Regina J. ;
Buza, Krisztian ;
Vidnyanszky, Zoltan .
FRONTIERS IN NEUROINFORMATICS, 2017, 11
[4]  
Paszke A, 2019, ADV NEUR IN, V32
[5]   3D-CNN based discrimination of schizophrenia using resting-state fMRI [J].
Qureshi, Muhammad Naveed Iqbal ;
Oh, Jooyoung ;
Leeg, Boreom .
ARTIFICIAL INTELLIGENCE IN MEDICINE, 2019, 98 :10-17
[6]  
Ruby A. U., 2020, Int. J. Adv. Trends Comput. Sci. Eng., V9, P5393, DOI [10.30534/ijatcse/2020/175942020, DOI 10.30534/IJATCSE/2020/175942020]
[7]  
Watanabe N., 2022, BIORXIV
[8]   Automatic Recognition of fMRI-Derived Functional Networks Using 3-D Convolutional Neural Networks [J].
Zhao, Yu ;
Dong, Qinglin ;
Zhang, Shu ;
Zhang, Wei ;
Chen, Hanbo ;
Jiang, Xi ;
Guo, Lei ;
Hu, Xintao ;
Han, Junwei ;
Liu, Tianming .
IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, 2018, 65 (09) :1975-1984