Effects of Carrier Transport Layers on Performance Degradation in Perovskite Solar Cells under Proton Irradiation

被引:3
|
作者
Liu, Ning [1 ,2 ]
Zhang, Limin [1 ,2 ]
Liang, Yongqi [3 ]
Xue, Bintao [1 ,2 ]
Wang, Dingping [1 ,2 ]
机构
[1] Lanzhou Univ, Sch Nucl Sci & Technol, Lanzhou 730000, Peoples R China
[2] Lanzhou Univ, Frontiers Sci Ctr Rare Isotopes, Lanzhou 730000, Peoples R China
[3] Lanzhou Univ, Coll Chem & Chem Engn, Key Lab Adv Catalysis Gansu Prov, Lanzhou 730000, Peoples R China
基金
中国国家自然科学基金;
关键词
proton irradiation; irradiation effects; perovskitesolar cells; electron transport layer; hole transportlayer; TOLERANCE; WEIGHT;
D O I
10.1021/acsaem.3c00727
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Perovskite solar cells (PSCs) are potentially ideal foruse inspace satellites and spacecraft. While perovskites were found to berobust to space particle irradiations, it is important to investigatethe influences of the carrier transport layers in PSCs on the irradiation-inducedperformance degradation. This study reports on the responses of differentCsMAFAPbI(3)-based PSCs to 250 keV proton irradiation. Spiro-OMeTADis used as a hole transport material in the cells, whereas SnO2, TiO2, and In2O3 are usedas electron transport materials. After irradiation, the three differentcells are not degraded up to 1 x 10(13) p/cm(2) and follow a similar degradation trend with further increasing theproton fluence until they are completely destroyed at 6 x 10(14) p/cm(2). By means of recycling, it is shown thatSnO(2), TiO2, and In2O3 havelittle influence on cell degradation, although the square resistancesof SnO2, TiO2, and In2O3 on FTO/glass substrates are increased by 15-19% after irradiationof 6 x 10(14) p/cm(2); instead, the degradationof the spiro-OMeTAD material accounts for the reduced performanceof the PSCs. The proton irradiation leads to a de-doping effect ofspiro-OMeTAD, causing an efficiency decrease of the PSCs. A more radiation-resistanthole transport material to replace spiro-OMeTAD is therefore warrantedto extend the lifetime of the PSCs in space environments.
引用
收藏
页码:6673 / 6680
页数:8
相关论文
共 50 条
  • [41] 24.11% High Performance Perovskite Solar Cells by Dual Interfacial Carrier Mobility Enhancement and Charge-Carrier Transport Balance
    Zhang, Yuhong
    Xu, Lin
    Sun, Jiao
    Wu, Yanjie
    Kan, Zitong
    Zhang, Huan
    Yang, Long
    Liu, Bin
    Dong, Biao
    Bai, Xue
    Song, Hongwei
    ADVANCED ENERGY MATERIALS, 2022, 12 (37)
  • [42] Improved stability of perovskite solar cells with enhanced moisture-resistant hole transport layers
    Liu, Detao
    Wang, Yafei
    Zheng, Hualin
    Wu, Jiang
    Ji, Long
    Zhang, Peng
    Ahmad, Waseem
    Chen, Hao
    Chen, Zhi
    Li, Shibin
    ELECTROCHIMICA ACTA, 2019, 296 : 508 - 516
  • [43] Origins of High Performance and Degradation in the Mixed Perovskite Solar Cells
    Heo, Sung
    Seo, Gabseok
    Lee, Yonghui
    Seol, Minsu
    Kim, Seong Heon
    Yun, Dong-Jin
    Kim, Yongsu
    Kim, Kihong
    Lee, Junho
    Lee, Jooho
    Jeon, Woo Sung
    Shin, Jai Kwang
    Park, Jucheol
    Lee, Dongwook
    Nazeeruddin, Mohammad Khaja
    ADVANCED MATERIALS, 2019, 31 (08)
  • [44] Effects of potassium treatment on SnO2 electron transport layers for improvements of perovskite solar cells
    Kim, SeongYeon
    Zhang, Fei
    Tong, Jinhui
    Chen, Xihan
    Enkhbayar, Enkhjargal
    Zhu, Kai
    Kim, JunHo
    SOLAR ENERGY, 2022, 233 : 353 - 362
  • [45] Pentacene as a hole transport material for high performance planar perovskite solar cells
    Yang, Xiude
    Wang, Gang
    Liu, Debei
    Yao, Yanqing
    Zhou, Guangdong
    Li, Ping
    Wu, Bo
    Rao, Xi
    Song, Qunliang
    CURRENT APPLIED PHYSICS, 2018, 18 (10) : 1095 - 1100
  • [46] Boosting Performance of Inverted Perovskite Solar Cells by Diluting Hole Transport Layer
    Yang, Xiude
    Lv, Feng
    Yao, Yanqing
    Li, Ping
    Wu, Bo
    Xu, Cunyun
    Zhou, Guangdong
    NANOMATERIALS, 2022, 12 (22)
  • [47] Improved Performance and Stability of Inverted Planar Perovskite Solar Cells Using Fulleropyrrolidine Layers
    Tian, Chengbo
    Castro, Edison
    Wang, Tan
    Betancourt-Solis, German
    Rodriguez, Gloria
    Echegoyen, Luis
    ACS APPLIED MATERIALS & INTERFACES, 2016, 8 (45) : 31426 - 31432
  • [48] Preparation of Nickel Oxide Nanoflakes for Carrier Extraction and Transport in Perovskite Solar Cells
    Chang, Chih-Yu
    Wu, You-Wei
    Yang, Sheng-Hsiung
    Abdulhalim, Ibrahim
    NANOMATERIALS, 2022, 12 (19)
  • [49] Study of molybdenum oxide optimized hole carrier transport in perovskite solar cells
    Sun, Shipeng
    Xu, Mengqi
    Zhang, Yongqi
    Liu, Ruilin
    Wang, Xueyan
    Zhang, Lisheng
    Fang, Yan
    Wang, Peijie
    ORGANIC ELECTRONICS, 2023, 113
  • [50] Hf Doping for Defect and Carrier Management in Magnetron-Sputtered Tin Oxide Electron Transport Layers for Perovskite Solar Cells
    Lan, Shuai
    Yoon, Geon Woo
    Luo, Fang
    Zhang, Qi
    Jung, Hyun Suk
    Hwang, Euy Heon
    Kim, Han-Ki
    ACS APPLIED MATERIALS & INTERFACES, 2025, 17 (08) : 12631 - 12638