Traffic Steering for 5G Multi-RAT Deployments using Deep Reinforcement Learning

被引:5
作者
Habib, Md Arafat [1 ]
Zhou, Hao [1 ]
Iturria-Rivera, Pedro Enrique [1 ]
Elsayed, Medhat [2 ]
Bavand, Majid [2 ]
Gaigalas, Raimundas [2 ]
Furr, Steve [2 ]
Erol-Kantarci, Melike [1 ]
机构
[1] Univ Ottawa, Sch Elect Engn & Comp Sci, Ottawa, ON, Canada
[2] Ericsson Inc, Ottawa, ON, Canada
来源
2023 IEEE 20TH CONSUMER COMMUNICATIONS & NETWORKING CONFERENCE, CCNC | 2023年
基金
加拿大自然科学与工程研究理事会;
关键词
Multi-RAT; traffic steering; reinforcement learning;
D O I
10.1109/CCNC51644.2023.10060026
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
In 5G non-standalone mode, traffic steering is a critical technique to take full advantage of 5G new radio while optimizing dual connectivity of 5G and LTE networks in multiple radio access technology (RAT). An intelligent traffic steering mechanism can play an important role to maintain seamless user experience by choosing appropriate RAT (5G or LTE) dynamically for a specific user traffic flow with certain QoS requirements. In this paper, we propose a novel traffic steering mechanism based on Deep Q-learning that can automate traffic steering decisions in a dynamic environment having multiple RATs, and maintain diverse QoS requirements for different traffic classes. The proposed method is compared with two baseline algorithms: a heuristic-based algorithm and Q-learning-based traffic steering. Compared to the Q-learning and heuristic baselines, our results show that the proposed algorithm achieves better performance in terms of 6% and 10% higher average system throughput, and 23% and 33% lower network delay, respectively.
引用
收藏
页数:6
相关论文
共 16 条
[1]   A Survey on 4G-5G Dual Connectivity: Road to 5G Implementation [J].
Agiwal, Mamta ;
Kwon, Hyeyeon ;
Park, Seungkeun ;
Jin, Hu .
IEEE ACCESS, 2021, 9 (09) :16193-16210
[2]   A Unified Traffic Steering Framework for LTE Radio Access Network Coordination [J].
Dryjanski, Marcin ;
Szydelko, Michal .
IEEE COMMUNICATIONS MAGAZINE, 2016, 54 (07) :84-92
[3]   Radio Resource and Beam Management in 5G mmWave Using Clustering and Deep Reinforcement Learning [J].
Elsayed, Medhat ;
Erol-Kantarci, Melike .
2020 IEEE GLOBAL COMMUNICATIONS CONFERENCE (GLOBECOM), 2020,
[4]  
Frenger P., 2019, A Technical Look at 5G Energy Consumption and Performance
[5]   A Data-Driven Traffic Steering Algorithm for Optimizing User Experience in Multi-Tier LTE Networks [J].
Gijon, Carolina ;
Toril, Matias ;
Luna-Ramirez, Salvador ;
Luisa Mari-Altozano, Maria .
IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, 2019, 68 (10) :9414-9424
[6]   A Green Traffic Steering Solution for Next Generation Communication Networks [J].
Khaled, Haitham ;
Ahmad, Iftekhar ;
Habibi, Daryoush ;
Quoc Viet Phung .
IEEE TRANSACTIONS ON COGNITIVE COMMUNICATIONS AND NETWORKING, 2021, 7 (01) :222-238
[7]   5G-Flow: A unified Multi-RAT RAN architecture for beyond 5G networks [J].
Khaturia, Meghna ;
Jha, Pranav ;
Karandikar, Abhay .
COMPUTER NETWORKS, 2021, 198
[8]   Human-level control through deep reinforcement learning [J].
Mnih, Volodymyr ;
Kavukcuoglu, Koray ;
Silver, David ;
Rusu, Andrei A. ;
Veness, Joel ;
Bellemare, Marc G. ;
Graves, Alex ;
Riedmiller, Martin ;
Fidjeland, Andreas K. ;
Ostrovski, Georg ;
Petersen, Stig ;
Beattie, Charles ;
Sadik, Amir ;
Antonoglou, Ioannis ;
King, Helen ;
Kumaran, Dharshan ;
Wierstra, Daan ;
Legg, Shane ;
Hassabis, Demis .
NATURE, 2015, 518 (7540) :529-533
[9]   A Survey on 5G Usage Scenarios and Traffic Models [J].
Navarro-Ortiz, Jorge ;
Romero-Diaz, Pablo ;
Sendra, Sandra ;
Ameigeiras, Pablo ;
Ramos-Munoz, Juan J. ;
Lopez-Soler, Juan M. .
IEEE COMMUNICATIONS SURVEYS AND TUTORIALS, 2020, 22 (02) :905-929
[10]   Pricing Based Distributed Traffic Allocation for 5G Heterogeneous Networks [J].
Passas, Virgilios ;
Miliotis, Vasileios ;
Makris, Nikos ;
Korakis, Thanasis .
IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, 2020, 69 (10) :12111-12123