CHARACTERIZATIONS OF THE INVERSION FORMULA OF THE CONTINUOUS BESSEL WAVELET TRANSFORM OF DISTRIBUTIONS IN Hμ′(Double-struck capital R plus )

被引:2
作者
Maurya, Jay singh [1 ]
Upadhyay, Santosh Kumar [1 ]
机构
[1] Indian Inst Technol BHU, Dept Math Sci, Varanasi 221005, India
关键词
Hankel Transform; Test Functions; Distribution; Bessel Wavelet Transform; HANKEL CONVOLUTION; SPACES; OPERATORS;
D O I
10.1142/S0218348X23400303
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The inversion formula of the continuous Bessel wavelet transform of distributions is investigated by exploiting the theory of the Hankel transform. Some auxiliary results related to the inversion formula are also obtained in this paper. Using the theory of inversion formula of continuous Bessel wavelet transform of distributions, the Calderon reproducing formula is developed. The continuous Bessel wavelet transform of distributions through heat equation is discussed and its inversion formula is considered.
引用
收藏
页数:19
相关论文
共 46 条
[1]   Biorthogonal wavelets on the spectrum [J].
Ahmad, Owais ;
Sheikh, Neyaz A. ;
Nisar, Kottakkaran Sooppy ;
Shah, Firdous A. .
MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2021, 44 (06) :4479-4490
[2]   Structure, boundedness, and convergence in the dual of a Hankel-K{Mp} space [J].
Arteaga, Cristian ;
Marrero, Isabel .
INTEGRAL TRANSFORMS AND SPECIAL FUNCTIONS, 2021, 32 (03) :174-190
[3]  
Betancor e J.J., 1993, Math. Japon, V38, P1141
[4]  
Betancor J.J., 2000, Int. J. Math. Math. Sci., V23, P131
[5]  
Betancor J.J., 1999, PUBL I MATH-BEOGRAD, V65, P123
[6]  
Betancor JJ, 1995, STUD MATH, V117, P57
[7]   Algebraic characterization of convolution and multiplication operators on Hankel-transformable function and distribution spaces [J].
Betancor, JJ ;
Marrero, I .
ROCKY MOUNTAIN JOURNAL OF MATHEMATICS, 1995, 25 (04) :1189-1204
[8]   A new characterization of the bounded operators commuting with Hankel translation [J].
Betancor, JJ .
ARCHIV DER MATHEMATIK, 1997, 69 (05) :403-408
[9]   SOME PROPERTIES OF HANKEL CONVOLUTION-OPERATORS [J].
BETANCOR, JJ ;
MARRERO, I .
CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES, 1993, 36 (04) :398-406
[10]   Convolution Hankel transforms on the Zemanian spaces [J].
Betancor, JJ ;
Jerez, C .
ACTA MATHEMATICA HUNGARICA, 1998, 80 (03) :225-235