Engineering Saccharomyces cerevisiae for enhanced (-)-α-bisabolol production

被引:17
作者
Jiang, Yinkun [1 ,2 ]
Xia, Lu [1 ,2 ]
Gao, Song [1 ,2 ]
Li, Ning [1 ,2 ]
Yu, Shiqin [1 ,2 ]
Zhou, Jingwen [1 ,2 ,3 ,4 ,5 ]
机构
[1] Jiangnan Univ, Engn Res Ctr, Minist Educ Food Synthet Biotechnol, 1800 Lihu Rd, Wuxi 214122, Jiangsu, Peoples R China
[2] Jiangnan Univ, Sci Ctr Future Foods, 1800 Lihu Rd, Wuxi 214122, Jiangsu, Peoples R China
[3] Jiangnan Univ, Key Lab Ind Biotechnol, Minist Educ, 1800 Lihu Rd, Wuxi 214122, Jiangsu, Peoples R China
[4] Jiangnan Univ, Sch Biotechnol, 1800 Lihu Rd, Wuxi 214122, Jiangsu, Peoples R China
[5] Jiangnan Univ, Jiangsu Prov Engn Res Ctr Food Synthet Biotechnol, Wuxi 214122, Peoples R China
基金
中国国家自然科学基金;
关键词
Metabolic engineering; (-)-?-bisabolol; Fusion expression; Transporter; Saccharomyces cerevisiae; HIGH-LEVEL PRODUCTION; PROTEIN; YEAST; BIOSYNTHESIS; SYNTHASE;
D O I
10.1016/j.synbio.2023.01.004
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
(-)-alpha-Bisabolol is naturally occurring in many plants and has great potential in health products and pharma-ceuticals. However, the current extraction method from natural plants is unsustainable and cannot fulfil the increasing requirement. This study aimed to develop a sustainable strategy to enhance the biosynthesis of (-)-alpha-bisabolol by metabolic engineering. By introducing the heterologous gene MrBBS and weakening the competitive pathway gene ERG9, a de novo (-)-alpha-bisabolol biosynthesis strain was constructed that could produce 221.96 mg/L (-)-alpha-bisabolol. Two key genes for (-)-alpha-bisabolol biosynthesis, ERG20 and MrBBS, were fused by a flexible linker (GGGS)3 under the GAL7 promoter control, and the titer was increased by 2.9-fold. Optimization of the mevalonic acid pathway and multi-copy integration further increased (-)-alpha-bisabolol production. To promote product efflux, overexpression of PDR15 led to an increase in extracellular production. Combined with the optimal strategy, (-)-alpha-bisabolol production in a 5 L bioreactor reached 7.02 g/L, which is the highest titer reported in yeast to date. This work provides a reference for the efficient production of (-)-alpha-bisabolol in yeast.
引用
收藏
页码:187 / 195
页数:9
相关论文
共 43 条
[1]   Identification of the Bisabolol Synthase in the Endangered Candeia Tree (Eremanthus erythropappus (DC) McLeisch) [J].
Albertti, Leticia Alves Gomes ;
Delatte, Thierry L. L. ;
de Farias, Katyuce Souza ;
Boaretto, Amanda Galdi ;
Verstappen, Francel ;
van Houwelingen, Adele ;
Cankar, Katarina ;
Carollo, Carlos Alexandre ;
Bouwmeester, Harro J. J. ;
Beekwilder, Jules .
FRONTIERS IN PLANT SCIENCE, 2018, 9
[2]   RIFM fragrance ingredient safety assessment, α-bisabolol, CAS registry number 515-69-5 [J].
Api, A. M. ;
Belsito, D. ;
Biserta, S. ;
Botelho, D. ;
Bruze, M. ;
Burton, G. A., Jr. ;
Buschmann, J. ;
Cancellieri, M. A. ;
Dagli, M. L. ;
Date, M. ;
Dekant, W. ;
Deodhar, C. ;
Fryer, A. D. ;
Gadhia, S. ;
Jones, L. ;
Joshi, K. ;
Lapczynski, A. ;
Lavelle, M. ;
Liebler, D. C. ;
Na, M. ;
O'Brien, D. ;
Patel, A. ;
Penning, T. M. ;
Ritacco, G. ;
Rodriguez-Ropero, F. ;
Romine, J. ;
Sadekar, N. ;
Salvito, D. ;
Schultz, T. W. ;
Siddiqi, F. ;
Sipes, I. G. ;
Sullivan, G. ;
Thakkar, Y. ;
Tokura, Y. ;
Tsang, S. .
FOOD AND CHEMICAL TOXICOLOGY, 2020, 141
[3]   Fusion protein linkers: Property, design and functionality [J].
Chen, Xiaoying ;
Zaro, Jennica L. ;
Shen, Wei-Chiang .
ADVANCED DRUG DELIVERY REVIEWS, 2013, 65 (10) :1357-1369
[4]   Fermentation and purification strategies for the production of betulinic acid and its lupane-type precursors in Saccharomyces cerevisiae [J].
Czarnotta, Eik ;
Dianat, Mariam ;
Korf, Marcel ;
Granica, Fabian ;
Merz, Juliane ;
Maury, Jerome ;
Jacobsen, Simo A. Baallal ;
Forster, Jochen ;
Ebert, Birgitta E. ;
Blank, Lars M. .
BIOTECHNOLOGY AND BIOENGINEERING, 2017, 114 (11) :2528-2538
[5]   Systematic identification of Ocimum sanctum sesquiterpenoid synthases and (-)-eremophilene overproduction in engineered yeast [J].
Deng, Xiaomin ;
Shi, Bin ;
Ye, Ziling ;
Huang, Man ;
Chen, Rong ;
Cai, Yousheng ;
Kuang, Zhaolin ;
Sun, Xiang ;
Bian, Guangkai ;
Deng, Zixin ;
Liu, Tiangang .
METABOLIC ENGINEERING, 2022, 69 :122-133
[6]   Genome engineering in Saccharomyces cerevisiae using CRISPR-Cas systems [J].
DiCarlo, James E. ;
Norville, Julie E. ;
Mali, Prashant ;
Rios, Xavier ;
Aach, John ;
Church, George M. .
NUCLEIC ACIDS RESEARCH, 2013, 41 (07) :4336-4343
[7]   Health Benefits, Pharmacological Effects, Molecular Mechanisms, and Therapeutic Potential of α-Bisabolol [J].
Eddin, Lujain Bader ;
Jha, Niraj Kumar ;
Goyal, Sameer N. ;
Agrawal, Yogeeta O. ;
Subramanya, Sandeep B. ;
Bastaki, Salim M. A. ;
Ojha, Shreesh .
NUTRIENTS, 2022, 14 (07)
[8]   Yeast genetic strain and plasmid collections [J].
Entian, Karl-Dieter ;
Koetter, Peter .
YEAST GENE ANALYSIS, SECOND EDITION, 2007, 36 :629-666
[9]   The antimicrobial activity of alpha-bisabolol and tea tree oil against Solobacterium moorei, a Gram-positive bacterium associated with halitosis [J].
Forrer, Marcel ;
Kulik, Eva M. ;
Filippi, Andreas ;
Waltimo, Tuomas .
ARCHIVES OF ORAL BIOLOGY, 2013, 58 (01) :10-16
[10]   Efficient Biosynthesis of (2S)-Eriodictyol from (2S)-Naringenin in Saccharomyces cerevisiae through a Combination of Promoter Adjustment and Directed Evolution [J].
Gao, Song ;
Xu, Xiaoyu ;
Zeng, Weizhu ;
Xu, Sha ;
Lyv, Yunbin ;
Feng, Yue ;
Kai, Guoyin ;
Zhou, Jingwen ;
Chen, Jian .
ACS SYNTHETIC BIOLOGY, 2020, 9 (12) :3288-3297