Masked Swin Transformer Unet for Industrial Anomaly Detection

被引:92
作者
Jiang, Jielin [1 ,2 ,3 ,4 ]
Zhu, Jiale [1 ]
Bilal, Muhammad [5 ]
Cui, Yan [6 ]
Kumar, Neeraj [7 ,8 ,9 ]
Dou, Ruihan [10 ]
Su, Feng [11 ]
Xu, Xiaolong [1 ,2 ,3 ,4 ]
机构
[1] Nanjing Univ Informat Sci & Technol, Sch Comp Sci, Nanjing 210044, Peoples R China
[2] Nanjing Univ, State Key Lab Novel Software Technol, Nanjing 210023, Peoples R China
[3] Nanjing Univ Informat Sci & Technol, Engn Res Ctr Digital Forens, Minist Educ, Nanjing 210044, Peoples R China
[4] Nanjing Univ Informat Sci & Technol, Jiangsu Collaborat Innovat Ctr Atmospher Environm, Nanjing 210044, Peoples R China
[5] Hankuk Univ Foreign Studies, Dept Comp & Elect Syst Engn, Yongin 17035, South Korea
[6] Nanjing Normal Univ Special Educ, Coll Math & Informat Sci, Nanjing 210038, Peoples R China
[7] Univ Petr & Energy Studies, Sch Comp Sci, Dehra Dun 248007, India
[8] Asia Univ, Dept Comp Sci & Informat Engn, Taichung 41354, Taiwan
[9] King Abdulaziz Univ, Jeddah 22254, Saudi Arabia
[10] Univ Waterloo, Fac Math, Waterloo, ON N2L 3G1, Canada
[11] Nanjing Univ, State Key Lab Novel Software Technol, Nanjing 210023, Peoples R China
基金
中国博士后科学基金; 美国国家科学基金会;
关键词
Anomaly detection; inpainting; Swin Transformer; Unet;
D O I
10.1109/TII.2022.3199228
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The intelligent detection process for industrial anomalies employs artificial intelligence methods to classify images that deviate from a normal appearance. Traditional convolutional neural network (CNN)-based anomaly detection algorithms mainly use the network to restructure abnormal areas and detect anomalies by calculating the errors between the original image and reconstructed image. However, the traditional CNNs struggle to extract global context information, resulting in poor anomaly detection performance. Thus, a masked Swin Transformer Unet (MSTUnet) for anomaly detection is proposed. To solve the problem of insufficient abnormal samples in the training phase, an anomaly simulation and mask strategy is first applied on anomaly-free samples to generate a simulated anomaly and, then, the Swin Transformer's powerful global learning ability is used to inpaint the masked area. Finally, a convolution-based Unet network is used for end-to-end anomaly detection. Experimental results on industrial dataset MVTec AD show that MSTUnet achieves superior anomaly detection and localization performance.
引用
收藏
页码:2200 / 2209
页数:10
相关论文
共 33 条
[1]   From Artificial Intelligence to Explainable Artificial Intelligence in Industry 4.0: A Survey on What, How, and Where [J].
Ahmed, Imran ;
Jeon, Gwanggil ;
Piccialli, Francesco .
IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, 2022, 18 (08) :5031-5042
[2]   Exploring Deep Learning Models for Overhead View Multiple Object Detection [J].
Ahmed, Imran ;
Din, Sadia ;
Jeon, Gwanggil ;
Piccialli, Francesco .
IEEE INTERNET OF THINGS JOURNAL, 2020, 7 (07) :5737-5744
[3]   Skip-GANomaly: Skip Connected and Adversarially Trained Encoder-Decoder Anomaly Detection [J].
Akcay, Samet ;
Atapour-Abarghouei, Amir ;
Breckon, Toby P. .
2019 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2019,
[4]   GANomaly: Semi-supervised Anomaly Detection via Adversarial Training [J].
Akcay, Samet ;
Atapour-Abarghouei, Amir ;
Breckon, Toby P. .
COMPUTER VISION - ACCV 2018, PT III, 2019, 11363 :622-637
[5]  
An J., 2015, SPECIAL LECT IE, V2, P1, DOI DOI 10.1007/BF00758335
[6]   UNSUPERVISED REGION-BASED ANOMALY DETECTION IN BRAIN MRI WITH ADVERSARIAL IMAGE INPAINTING [J].
Bao Nguyen ;
Feldman, Adam ;
Bethapudi, Sarath ;
Jennings, Andrew ;
Wlllcocks, Chris G. .
2021 IEEE 18TH INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING (ISBI), 2021, :1127-1131
[7]   Deep Autoencoding Models for Unsupervised Anomaly Segmentation in Brain MR Images [J].
Baur, Christoph ;
Wiestler, Benedikt ;
Albarqouni, Shadi ;
Navab, Nassir .
BRAINLESION: GLIOMA, MULTIPLE SCLEROSIS, STROKE AND TRAUMATIC BRAIN INJURIES, BRAINLES 2018, PT I, 2019, 11383 :161-169
[8]   Improving Unsupervised Defect Segmentation by Applying Structural Similarity to Autoencoders [J].
Bergmann, Paul ;
Loewe, Sindy ;
Fauser, Michael ;
Sattlegger, David ;
Steger, Carsten .
PROCEEDINGS OF THE 14TH INTERNATIONAL JOINT CONFERENCE ON COMPUTER VISION, IMAGING AND COMPUTER GRAPHICS THEORY AND APPLICATIONS (VISAPP), VOL 5, 2019, :372-380
[9]   MVTec AD - A Comprehensive Real-World Dataset for Unsupervised Anomaly Detection [J].
Bergmann, Paul ;
Fauser, Michael ;
Sattlegger, David ;
Steger, Carsten .
2019 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2019), 2019, :9584-9592
[10]  
Chen J, 2021, arXiv