Pure Isotropic Proton NMR Spectra in Solids using Deep Learning

被引:15
|
作者
Cordova, Manuel [1 ,2 ]
Moutzouri, Pinelopi [1 ]
de Almeida, Bruno Simoes [1 ]
Torodii, Daria [1 ]
Emsley, Lyndon [1 ,2 ]
机构
[1] Ecole Polytech Fed Lausanne EPFL, Inst Sci & Ingenierie Chim, CH-1015 Lausanne, Switzerland
[2] Ecole Polytech Fed Lausanne EPFL, Natl Ctr Computat Design & Discovery Novel Mat MAR, CH-1015 Lausanne, Switzerland
基金
瑞士国家科学基金会;
关键词
Machine Learning; NMR Spectroscopy; Solid-State Structures; CARBON-CARBON CONNECTIVITIES; STATE NMR; SPECTROSCOPY; SYSTEMS;
D O I
10.1002/anie.202216607
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The resolution of proton solid-state NMR spectra is usually limited by broadening arising from dipolar interactions between spins. Magic-angle spinning alleviates this broadening by inducing coherent averaging. However, even the highest spinning rates experimentally accessible today are not able to completely remove dipolar interactions. Here, we introduce a deep learning approach to determine pure isotropic proton spectra from a two-dimensional set of magic-angle spinning spectra acquired at different spinning rates. Applying the model to 8 organic solids yields high-resolution H-1 solid-state NMR spectra with isotropic linewidths in the 50-400 Hz range.
引用
收藏
页数:8
相关论文
共 50 条
  • [21] Predicting compressive strength of consolidated molecular solids using computer vision and deep learning
    Gallagher, Brian
    Rever, Matthew
    Loveland, Donald
    Mundhenk, T. Nathan
    Beauchamp, Brock
    Robertson, Emily
    Jaman, Golam G.
    Hiszpanski, Anna M.
    Han, T. Yong-Jin
    MATERIALS & DESIGN, 2020, 190
  • [22] Access to experimentally infeasible spectra by pure-shift NMR covariance
    Fredi, Andre
    Nolis, Pau
    Cobas, Carlos
    Parella, Teodor
    JOURNAL OF MAGNETIC RESONANCE, 2016, 270 : 161 - 168
  • [23] HyperBIRD: A Sensitivity-Enhanced Approach to Collecting Homonuclear-Decoupled Proton NMR Spectra
    Donovan, Kevin J.
    Frydman, Lucio
    ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2015, 54 (02) : 594 - 598
  • [24] Fundamental and practical aspects of machine learning for the peak picking of biomolecular NMR spectra
    Da-Wei Li
    Alexandar L. Hansen
    Lei Bruschweiler-Li
    Chunhua Yuan
    Rafael Brüschweiler
    Journal of Biomolecular NMR, 2022, 76 : 49 - 57
  • [25] Fundamental and practical aspects of machine learning for the peak picking of biomolecular NMR spectra
    Li, Da-Wei
    Hansen, Alexandar L.
    Bruschweiler-Li, Lei
    Yuan, Chunhua
    Bruschweiler, Rafael
    JOURNAL OF BIOMOLECULAR NMR, 2022, 76 (03) : 49 - 57
  • [26] Analysis of Raman Spectra by Using Deep Learning Methods in the Identification of Marine Pathogens
    Yu, Shixiang
    Li, Xin
    Lu, Weilai
    Li, Hanfei
    Fu, Yu Vincent
    Liu, Fanghua
    ANALYTICAL CHEMISTRY, 2021, 93 (32) : 11089 - 11098
  • [27] "Perfecting" WATERGATE: clean proton NMR spectra from aqueous solution
    Adams, Ralph W.
    Holroyd, Chloe M.
    Aguilar, Juan A.
    Nilsson, Mathias
    Morris, Gareth A.
    CHEMICAL COMMUNICATIONS, 2013, 49 (04) : 358 - 360
  • [28] Accurate optical spectra of solids from pure time-dependent density functional theory
    Cavo, Sarah
    Berger, J. A.
    Romaniello, Pina
    PHYSICAL REVIEW B, 2020, 101 (11)
  • [29] Paramagnetic effects on the NMR spectra of isotropic bicelles with headgroup modified chelator lipids and metal ions
    Tang, Ming
    Mao, Kevin
    Li, Stacey
    Zhuang, Jianqin
    Diallo, Koumba
    PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2016, 18 (23) : 15524 - 15527
  • [30] Calibrating optical spectra using machine learning algorithms
    Shakirov, M. A.
    MAGNETIC RESONANCE IN SOLIDS, 2020, 22 (01)