Symmetry and monotonicity of positive solutions for a system involving fractional p&q-Laplacian in a ball

被引:6
作者
Cao, Linfen [1 ]
Fan, Linlin [1 ]
机构
[1] Henan Normal Univ, Coll Math & Informat Sci, Xinxiang, Henan, Peoples R China
基金
中国国家自然科学基金;
关键词
Method of moving planes; fractional p&q-Laplacian; radial symmetry; monotonicity; MAXIMUM-PRINCIPLES; (P;
D O I
10.1080/17476933.2021.2009819
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we study a nonlinear system involving the fractional p&q-Laplacian in the unit ball {(-Delta)(p)(s1) u(x) + (-Delta)(q)(s2)u(x) = u(x)(v(x))(beta), x is an element of B-1(0), (-Delta)(p)(s1)v(x) + (-Delta)(q)(s2)v(x) = v(x)(u(x))(alpha), x is an element of B-1(0), u = v = 0, x is an element of R-n\B-1(0), where 0 < s(1), s(2) < 1, p, q > 2, alpha, beta > 1. By using the direct method of moving planes, we prove that the positive solutions (u, v) of the system must be radially symmetric and monotone decreasing about the origin.
引用
收藏
页码:667 / 679
页数:13
相关论文
共 50 条
[41]   Qualitative properties of solutions for system involving the fractional Laplacian [J].
Zhuo, Ran ;
Lu, Yingshu .
PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 2024,
[42]   PROPERTIES OF POSITIVE SOLUTIONS FOR THE FRACTIONAL LAPLACIAN SYSTEMS WITH POSITIVE-NEGATIVE MIXED POWERS [J].
Lu, Zhongxue ;
Niu, Mengjia ;
Shen, Yuanyuan ;
Yuan, Anjie .
JOURNAL OF THE KOREAN MATHEMATICAL SOCIETY, 2024, 61 (03) :445-459
[43]   RADIAL SYMMETRY OF POSITIVE SOLUTIONS TO A CLASS OF FRACTIONAL LAPLACIAN WITH A SINGULAR NONLINEARITY [J].
Cao, Linfen ;
Wang, Xiaoshan .
JOURNAL OF THE KOREAN MATHEMATICAL SOCIETY, 2021, 58 (06) :1449-1460
[44]   Radial Symmetry for Weak Positive Solutions of Fractional Laplacian with a Singular Nonlinearity [J].
Wang, Xing ;
Zhang, Li .
SYMMETRY-BASEL, 2018, 10 (12)
[45]   The radial symmetry of positive solutions for semilinear problems involving weighted fractional Laplacians [J].
Ying Wang ;
Yanjing Qiu ;
Qingping Yin .
Acta Mathematica Scientia, 2024, 44 :1020-1035
[46]   The radial symmetry of positive solutions for semilinear problems involving weighted fractional Laplacians [J].
Wang, Ying ;
Qiu, Yanjing ;
Yin, Qingping .
ACTA MATHEMATICA SCIENTIA, 2024, 44 (03) :1020-1035
[47]   Monotonicity results for the fractional p-Laplacian in unbounded domains [J].
Wu, Leyun ;
Yu, Mei ;
Zhang, Binlin .
BULLETIN OF MATHEMATICAL SCIENCES, 2021, 11 (02)
[48]   Symmetry results for systems involving fractional Laplacian [J].
Xiongjun Zheng ;
Jian Wang .
Indian Journal of Pure and Applied Mathematics, 2014, 45 :39-52
[49]   Multiplicity of solutions for a singular system involving the fractional p-q-Laplacian operator and sign-changing weight functions [J].
Chung, Nguyen Thanh ;
Ghanmi, Abdeljabbar .
ZEITSCHRIFT FUR ANALYSIS UND IHRE ANWENDUNGEN, 2022, 41 (01) :167-187
[50]   Multiple solutions for eigenvalue problems involving the (p, q)-Laplacian [J].
Pucci, Patrizia .
STUDIA UNIVERSITATIS BABES-BOLYAI MATHEMATICA, 2023, 68 (01) :93-108