Symmetry and monotonicity of positive solutions for a system involving fractional p&q-Laplacian in a ball

被引:6
作者
Cao, Linfen [1 ]
Fan, Linlin [1 ]
机构
[1] Henan Normal Univ, Coll Math & Informat Sci, Xinxiang, Henan, Peoples R China
基金
中国国家自然科学基金;
关键词
Method of moving planes; fractional p&q-Laplacian; radial symmetry; monotonicity; MAXIMUM-PRINCIPLES; (P;
D O I
10.1080/17476933.2021.2009819
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we study a nonlinear system involving the fractional p&q-Laplacian in the unit ball {(-Delta)(p)(s1) u(x) + (-Delta)(q)(s2)u(x) = u(x)(v(x))(beta), x is an element of B-1(0), (-Delta)(p)(s1)v(x) + (-Delta)(q)(s2)v(x) = v(x)(u(x))(alpha), x is an element of B-1(0), u = v = 0, x is an element of R-n\B-1(0), where 0 < s(1), s(2) < 1, p, q > 2, alpha, beta > 1. By using the direct method of moving planes, we prove that the positive solutions (u, v) of the system must be radially symmetric and monotone decreasing about the origin.
引用
收藏
页码:667 / 679
页数:13
相关论文
共 50 条
[21]   Positive radial solutions for a class of (p, q) Laplacian in a ball [J].
Hai, D. D. ;
Shivaji, R. ;
Wang, X. .
POSITIVITY, 2023, 27 (01)
[22]   Positive radial solutions for a class of (p, q) Laplacian in a ball [J].
D. D. Hai ;
R. Shivaji ;
X. Wang .
Positivity, 2023, 27
[23]   Symmetry and monotonicity of positive solutions to Schrödinger systems with fractional p-Laplacians [J].
Ling-wei Ma ;
Zhen-qiu Zhang .
Applied Mathematics-A Journal of Chinese Universities, 2022, 37 :52-72
[24]   Symmetry and monotonicity of positive solutions for a system involving fractional p&q-Laplacian in Rn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {R}}^{n}$$\end{document} [J].
Linfen Cao ;
Linlin Fan .
Analysis and Mathematical Physics, 2022, 12 (2)
[25]   Symmetry of positive solutions of fractional Laplacian equation and system with Hardy-Sobolev exponent on the unit ball [J].
Zhao, Junping ;
Dou, Jingbo ;
Zhou, Huaiyu .
JOURNAL OF PSEUDO-DIFFERENTIAL OPERATORS AND APPLICATIONS, 2015, 6 (04) :503-519
[26]   Maximum principles for the fractional p-Laplacian and symmetry of solutions [J].
Chen, Wenxiong ;
Li, Congming .
ADVANCES IN MATHEMATICS, 2018, 335 :735-758
[27]   NONEXISTENCE AND SYMMETRY OF SOLUTIONS FOR SCHRODINGER SYSTEMS INVOLVING FRACTIONAL LAPLACIAN [J].
Zhuo, Ran ;
Li, Yan .
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2019, 39 (03) :1595-1611
[28]   SYMMETRY AND NONEXISTENCE OF POSITIVE SOLUTIONS TO FRACTIONAL P-LAPLACIAN EQUATIONS [J].
Wu, Leyun ;
Niu, Pengcheng .
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2019, 39 (03) :1573-1583
[29]   Symmetry and non-existence of positive solutions for fractional p-Laplacian systems [J].
Chen, Yonggang ;
Liu, Baiyu .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2019, 183 :303-322
[30]   SYMMETRY AND NON-EXISTENCE OF SOLUTIONS FOR A NONLINEAR SYSTEM INVOLVING THE FRACTIONAL LAPLACIAN [J].
Zhuo, Ran ;
Chen, Wenxiong ;
Cui, Xuewei ;
Yuan, Zixia .
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2016, 36 (02) :1125-1141