Symmetry and monotonicity of positive solutions for a system involving fractional p&q-Laplacian in a ball

被引:6
作者
Cao, Linfen [1 ]
Fan, Linlin [1 ]
机构
[1] Henan Normal Univ, Coll Math & Informat Sci, Xinxiang, Henan, Peoples R China
基金
中国国家自然科学基金;
关键词
Method of moving planes; fractional p&q-Laplacian; radial symmetry; monotonicity; MAXIMUM-PRINCIPLES; (P;
D O I
10.1080/17476933.2021.2009819
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we study a nonlinear system involving the fractional p&q-Laplacian in the unit ball {(-Delta)(p)(s1) u(x) + (-Delta)(q)(s2)u(x) = u(x)(v(x))(beta), x is an element of B-1(0), (-Delta)(p)(s1)v(x) + (-Delta)(q)(s2)v(x) = v(x)(u(x))(alpha), x is an element of B-1(0), u = v = 0, x is an element of R-n\B-1(0), where 0 < s(1), s(2) < 1, p, q > 2, alpha, beta > 1. By using the direct method of moving planes, we prove that the positive solutions (u, v) of the system must be radially symmetric and monotone decreasing about the origin.
引用
收藏
页码:667 / 679
页数:13
相关论文
共 18 条
[1]   An eigenvalue problem for a quasilinear elliptic field equation [J].
Benci, V ;
Micheletti, AM ;
Visetti, D .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2002, 184 (02) :299-320
[2]   On a class of critical (p, q)-Laplacian problems [J].
Candito, Pasquale ;
Marano, Salvatore A. ;
Perera, Kanishka .
NODEA-NONLINEAR DIFFERENTIAL EQUATIONS AND APPLICATIONS, 2015, 22 (06) :1959-1972
[3]   Radial Symmetry and Monotonicity of Solutions to a System Involving Fractional p-Laplacian in a Ball [J].
Cao, Linfen ;
Wang, Xiaoshan ;
Dai, Zhaohui .
ADVANCES IN MATHEMATICAL PHYSICS, 2018, 2018
[4]  
Chen W., 2019, MAXIMUM PRINCIPLE UN
[5]   Existence of solutions for critical fractional p&q-Laplacian system [J].
Chen, Wenjing .
COMPLEX VARIABLES AND ELLIPTIC EQUATIONS, 2021, 66 (04) :626-641
[6]   Maximum principles for the fractional p-Laplacian and symmetry of solutions [J].
Chen, Wenxiong ;
Li, Congming .
ADVANCES IN MATHEMATICS, 2018, 335 :735-758
[7]   A direct method of moving planes for the fractional Laplacian [J].
Chen, Wenxiong ;
Li, Congming ;
Li, Yan .
ADVANCES IN MATHEMATICS, 2017, 308 :404-437
[8]   Symmetry and non-existence of positive solutions for fractional p-Laplacian systems [J].
Chen, Yonggang ;
Liu, Baiyu .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2019, 183 :303-322
[9]  
Dai ZH, 2016, J INEQUAL APPL, DOI 10.1186/s13660-016-1207-9
[10]  
Fife PC., 1979, MATH ASPECTS REACTIN, V28