Dual-convolutional neural network-enhanced strain estimation method for optical coherence elastography

被引:11
作者
Bai, Yulei [1 ,2 ]
Zhang, Zhanhua [1 ]
He, Zhaoshui [1 ,2 ]
Xie, Shengli [1 ]
Dong, Bo [1 ]
机构
[1] Guangdong Univ Technol, Sch Automat, Guangzhou 510006, Peoples R China
[2] Minist Educ, Key Lab Intelligent Detect & Internet Things Mfg, Guangzhou 510006, Peoples R China
基金
中国国家自然科学基金;
关键词
TISSUE;
D O I
10.1364/OL.507931
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Strain estimation is vital in phase-sensitive optical coherence elastography (PhS-OCE). In this Letter, we introduce a novel, to the best of our knowledge, method to improve strain estimation by using a dual-convolutional neural network (Dual-CNN). This approach requires two sets of PhS-OCE systems: a high-resolution system for high-quality training data and a cost-effective standard-resolution system for practical measurements. During training, high-resolution strain results acquired from the former system and the preexisting strain estimation CNN serve as label data, while the narrowed light source-acquired standard-resolution phase results act as input data. By training a new network with this data, high-quality strain results can be estimated from standard-resolution PhS-OCE phase results. Comparison experiments show that the proposed Dual-CNN can preserve the strain quality even when the light source bandwidth is reduced by over 80%. (c) 2024 Optica Publishing Group
引用
收藏
页码:438 / 441
页数:4
相关论文
共 18 条
[1]   Double-shot depth-resolved displacement field measurement using phase-contrast spectral optical coherence tomography [J].
De la Torre-Ibarra, Manuel H. ;
Ruiz, Pablo D. ;
Huntley, Jonathan M. .
OPTICS EXPRESS, 2006, 14 (21) :9643-9656
[2]   Deep-learning-based approach for strain estimation in phase-sensitive optical coherence elastography [J].
Dong, Bo ;
Huang, Naixing ;
Bai, Yulei ;
Xie, Shengli .
OPTICS LETTERS, 2021, 46 (23) :5914-5917
[3]   Visualizing curing process inside polymers [J].
Dong, Bo ;
Pan, Bing .
APPLIED PHYSICS LETTERS, 2020, 116 (05)
[4]   Microdefect identification in polymers by mapping depth-resolved phase difference distributions using optical coherence tomography [J].
Dong, Bo ;
Pan, Bing ;
Zhang, Yun ;
Bai, Yulei .
POLYMER TESTING, 2018, 68 :233-237
[5]  
Kennedy BF, 2017, NAT PHOTONICS, V11, P215, DOI [10.1038/NPHOTON.2017.6, 10.1038/nphoton.2017.6]
[6]   Strain estimation in phase-sensitive optical coherence elastography [J].
Kennedy, Brendan F. ;
Koh, Sze Howe ;
McLaughlin, Robert A. ;
Kennedy, Kelsey M. ;
Munro, Peter R. T. ;
Sampson, David D. .
BIOMEDICAL OPTICS EXPRESS, 2012, 3 (08) :1865-1879
[7]   Deep Dual Attention Network for Precise Diagnosis of COVID-19 From Chest CT Images [J].
Lin Z. ;
He Z. ;
Yao R. ;
Wang X. ;
Liu T. ;
Deng Y. ;
Xie S. .
IEEE Transactions on Artificial Intelligence, 2024, 5 (01) :104-114
[8]  
Lin Z., 2023, IEEE Trans. Circuits Syst. Video Technol. Early access, V1
[9]  
Liu T., 2022, IEEE Trans. Neural Netw. Learning Syst., V1
[10]   Vector method for strain estimation in phase-sensitive optical coherence elastography [J].
Matveyev, A. L. ;
Matveev, L. A. ;
Sovetsky, A. A. ;
Gelikonov, G., V ;
Moiseev, A. A. ;
Zaitsev, V. Y. .
LASER PHYSICS LETTERS, 2018, 15 (06)