Research on wheel-rail dynamic interaction of high-speed railway under low adhesion condition

被引:5
|
作者
Lu, Chenxu [1 ]
Chen, Dilai [1 ]
Shi, Jin [2 ]
Li, Zhuqing [3 ]
机构
[1] Shanghai Inst Technol, Sch Railway Transportat, Shanghai 201418, Peoples R China
[2] Beijing Jiao Tong Univ, Sch Civil Engn, Beijing 100044, Peoples R China
[3] China Acad Railway Sci Corp Ltd, Railway Engn Res Inst, Beijing 100081, Peoples R China
关键词
Wheel-rail interaction; Low adhesion; High speed; Wear; Longitudinal impact; SIMULATION; TRACTION; CREEP; CONTACT; CONTAMINATION; TEMPERATURE; ENVIRONMENT; BEHAVIOR; FORCES; WATER;
D O I
10.1016/j.engfailanal.2023.107935
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
Due to the inherent openness of the wheel-rail system, the wheel-rail interface is subject to the influence of a third medium, resulting in a low adhesion state. This study investigates the dynamic interaction between the wheel and rail under low adhesion conditions through the development of a numerical model employing anti-skid control strategies and infinite long track simulation technology. The model's validity is established by comparing its calculations with data from both the multi-body dynamics software UM and field tests. The numerical simulations uncover that the implementation of rail side lubrication significantly reduces longitudinal creep forces, thereby diminishing the wheelset's steering capabilities. Furthermore, it induces a notable increase in lateral wheel-rail interaction, consequently lowering safety indicators in vehicle operations. Rail side lubrication is found to substantially reduce rail side wear, resulting in an approximate 60% decrease in the maximum wear depth. Comprehensive friction control on the rail surface concurrently mitigates rail side and top surface wear. In instances of local low adhesion on both sides, the wheelset experiences pronounced stick-slip vibrations, leading to a deterioration in the longitudinal dynamic performance between the wheel and rail. Unilateral low adhesion situations prompt noticeable yawing and shaking motions within the low adhesion zone, resulting in evident lateral impact phenomena. Upon re-entering the normal adhesion zone from the low adhesion zone, the rail wear index experiences a significant peak, which means that the rails in this area are prone to severe local wear or fatigue.
引用
收藏
页数:18
相关论文
共 50 条
  • [1] Dynamic Response of Wheel-Rail Interaction at Rail Weld in High-Speed Railway
    An, Boyang
    Wang, Ping
    Xiao, Jieling
    Xu, Jingmang
    Chen, Rong
    SHOCK AND VIBRATION, 2017, 2017
  • [2] Experiment research on wheel/rail adhesion characteristics for high-speed railway
    Zhang, Weihua
    Zhou, Wenxiang
    Chen, Liangqi
    Jin, Xuesong
    Huang, Lixiang
    Tiedao Xuebao/Journal of the China Railway Society, 2000, 22 (02): : 20 - 25
  • [4] Numerical Investigation on Wheel-Rail Dynamic Vibration Excited by Rail Spalling in High-Speed Railway
    Wang, Kaiyun
    Zhai, Wanming
    Lv, Kaikai
    Chen, Zaigang
    SHOCK AND VIBRATION, 2016, 2016
  • [5] WHEEL-RAIL VERTICAL FORCES IN HIGH-SPEED RAILWAY OPERATION
    RADFORD, RW
    JOURNAL OF ENGINEERING FOR INDUSTRY-TRANSACTIONS OF THE ASME, 1977, 99 (04): : 849 - 858
  • [6] Wheel-rail dynamic interaction due to rail weld irregularity in high-speed railways
    Gao, Jianmin
    Zhai, Wanming
    Guo, Yi
    PROCEEDINGS OF THE INSTITUTION OF MECHANICAL ENGINEERS PART F-JOURNAL OF RAIL AND RAPID TRANSIT, 2018, 232 (01) : 249 - 261
  • [7] Dynamic response of wheel-rail based on frost heave of high-speed railway subgrade
    Zhang L.
    Zhao G.
    Zhendong yu Chongji/Journal of Vibration and Shock, 2020, 39 (01): : 8 - 14and23
  • [8] Research Progress of High-Speed Wheel-Rail Relationship
    Jin, Xuesong
    LUBRICANTS, 2022, 10 (10)
  • [9] Wheel/rail dynamic interaction due to excitation of rail corrugation in high-speed railway
    WANG Kai Yun
    LIU Peng Fei
    ZHAI Wan Ming
    HUANG Chao
    CHEN Zai Gang
    GAO JianMin
    Science China(Technological Sciences), 2015, (02) : 226 - 235
  • [10] Wheel/rail dynamic interaction due to excitation of rail corrugation in high-speed railway
    Wang KaiYun
    Liu PengFei
    Zhai WanMing
    Huang Chao
    Chen ZaiGang
    Gao JianMin
    SCIENCE CHINA-TECHNOLOGICAL SCIENCES, 2015, 58 (02) : 226 - 235