Enhanced Electrochemical Performance of Ca-Doped Na3V2(PO4)2F3/C Cathode Materials for Sodium-Ion Batteries

被引:13
作者
Puspitasari, Diah Agustina [1 ,2 ]
Patra, Jagabandhu [3 ,4 ]
Hernandha, Rahmandhika Firdauzha Hary [3 ]
Chiang, Yu-Shen [1 ]
Inoishi, Atsushi [5 ]
Chang, Bor Kae [1 ]
Lee, Tai-Chou [1 ]
Chang, Jeng-Kuei [3 ,4 ,6 ]
机构
[1] Natl Cent Univ, Dept Chem & Mat Engn, Taoyuan 320, Taiwan
[2] Brawijaya Univ, Dept Chem Engn, Malang 65145, East Java, Indonesia
[3] Natl Yang Ming Chiao Tung Univ, Dept Mat Sci & Engn, Hsinchu 30010, Taiwan
[4] Natl Cheng Kung Univ, Hierarch Green Energy Mat Hi GEM Res Ctr, Tainan 70101, Taiwan
[5] Kyushu Univ, Int Inst Mat & Engn, Fukuoka 8190395, Japan
[6] Chung Yuan Christian Univ, Dept Chem Engn, Taoyuan 32023, Taiwan
关键词
electronic conductivity; density functional theory; Ca2+ doping; Na-ion transport; cyclingstability; NI-RICH LINI0.8CO0.1MN0.1O2; HIGH-POWER; RATIONAL DESIGN; ANODE MATERIALS; SUBSTITUTION; MECHANISM; NANOCOMPOSITE; CAPABILITY; STABILITY; DISORDER;
D O I
10.1021/acsami.3c12772
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Na3V2(PO4)(2)F-3 (NVPF) with a NASICON structure has garnered attention as a cathode material owing to its stable 3D structure, rapid ion diffusion channels, high operating voltage, and impressive cycling stability. Nevertheless, the low intrinsic electronic conductivity of the material leading to a poor rate capability presents a significant challenge for practical application. Herein, we develop a series of Ca-doped NVPF/C cathode materials with various Ca2+ doping levels using a simple sol-gel and carbon thermal reduction approach. X-ray diffraction analysis confirmed that the inclusion of Ca2+ does not alter the crystal structure of the parent material but instead expands the lattice spacing. Density functional theory calculations depict that substituting Ca2+ ions at the V3+ site reduces the band gap, leading to increased electronic conductivity. This substitution also enhanced the structural stability, preventing lattice distortion during the charge/discharge cycles. Furthermore, the presence of the Ca2+ ion introduces two localized states within the band gap, resulting in enhanced electrochemical performance compared to that of Mg-doped NVPF/C. The optimal NVPF-Ca-0.05/C cathode exhibits superior specific capacities of 124 and 86 mAh g(-1) at 0.1 and 10 C, respectively. Additionally, the NVPF-Ca-0.05/C demonstrates satisfactory capacity retention of 70% after 1000 charge/discharge cycles at 10 C. These remarkable results can be attributed to the optimized particle size, excellent structural stability, and enhanced ionic and electronic conductivity induced by the Ca doping. Our findings provide valuable insight into the development of cathode material with desirable electrochemical properties.
引用
收藏
页码:496 / 506
页数:11
相关论文
共 50 条
  • [31] Enhanced Cycling Stability and Rate Capability in a La-Doped Na3V2(PO4)3/C Cathode for High-Performance Sodium Ion Batteries
    Bi, Linnan
    Li, Xiaoyan
    Liu, Xiaoqin
    Zheng, Qiaoji
    Lin, Dunmin
    [J]. ACS SUSTAINABLE CHEMISTRY & ENGINEERING, 2019, 7 (08) : 7693 - +
  • [32] High performance Na3V2(PO4)3 cathode prepared by a facile solution evaporation method for sodium-ion batteries
    Zheng, Li -Li
    Xue, Yuan
    Liu, Bao-Sheng
    Zhou, Yu-Xiang
    Hao, Su-E
    Wang, Zhen-bo
    [J]. CERAMICS INTERNATIONAL, 2017, 43 (06) : 4950 - 4956
  • [33] Environmental Impact Assessment of Na3V2(PO4)3 Cathode Production for Sodium-Ion Batteries
    Rey, Irene
    Iturrondobeitia, Maider
    Akizu-Gardoki, Ortzi
    Minguez, Rikardo
    Lizundia, Erlantz
    [J]. ADVANCED ENERGY AND SUSTAINABILITY RESEARCH, 2022, 3 (08):
  • [34] Synthesis of Na3V2(PO4)3/C Composites as High-Performance Cathode Materials for Sodium Ion Batteries
    Ding, Xiang
    Huang, Xiaobing
    Zhou, Shibiao
    Xiao, Anguo
    Chen, Yuandao
    Zuo, Chenggang
    Jin, Junling
    [J]. INTERNATIONAL JOURNAL OF ELECTROCHEMICAL SCIENCE, 2019, 14 (03): : 2815 - 2821
  • [35] 3D interconnected porous carbon coated Na3V2(PO4)3/C composite cathode materials for sodium-ion batteries
    Li, Nali
    Tong, Yanwei
    Yi, Dawei
    Cui, Xumei
    Zhang, Xuefeng
    [J]. CERAMICS INTERNATIONAL, 2020, 46 (17) : 27493 - 27498
  • [36] Optimizing high voltage Na3V2(PO4)2F3 cathode for achieving high rate sodium-ion batteries with long cycle life
    Subramanian, Yuvaraj
    Oh, Woong
    Choi, Woosung
    Lee, Hayeon
    Jeong, Mihee
    Thangavel, Ranjith
    Yoon, Won-Sub
    [J]. CHEMICAL ENGINEERING JOURNAL, 2021, 403
  • [37] Superior Electrochemical Performance and Storage Mechanism of Na3V2(PO4)3 Cathode for Room-Temperature Sodium-Ion Batteries
    Jian, Zelang
    Han, Wenze
    Lu, Xia
    Yang, Huaixin
    Hu, Yong-Sheng
    Zhou, Jing
    Zhou, Zhibin
    Li, Jianqi
    Chen, Wen
    Chen, Dongfeng
    Chen, Liquan
    [J]. ADVANCED ENERGY MATERIALS, 2013, 3 (02) : 156 - 160
  • [38] Y-Doped Na3V2(PO4)2F3 compounds for sodium ion battery cathodes: electrochemical performance and analysis of kinetic properties
    Liu, Wanqiu
    Yi, Hongming
    Zheng, Qiong
    Li, Xianfeng
    Zhang, Huamin
    [J]. JOURNAL OF MATERIALS CHEMISTRY A, 2017, 5 (22) : 10928 - 10935
  • [39] Na3V2(PO4)3 with specially designed carbon framework as high performance cathode for sodium-ion batteries
    Zheng, Li-Li
    Xue, Yuan
    Deng, Liang
    Wu, Guo-Rui
    Hao, Su-E.
    Wang, Zhen-bo
    [J]. CERAMICS INTERNATIONAL, 2019, 45 (04) : 4637 - 4644
  • [40] Fabrication of graphene-encapsulated Na3V2(PO4)3 as high-performance cathode materials for sodium-ion batteries
    Tao, Shi
    Wang, Xingbo
    Cui, Peixin
    Wang, Yu
    Haleem, Yasir A.
    Wei, Shenghui
    Huang, Weifeng
    Song, Li
    Chu, Wangsheng
    [J]. RSC ADVANCES, 2016, 6 (49): : 43591 - 43597