On linear preservers of permanental rank

被引:0
作者
Guterman, A. E. [1 ,2 ]
Spiridonov, I. A. [2 ,3 ]
机构
[1] Bar Ilan Univ, Dept Math, Ramat Gan 5290002, Israel
[2] Moscow Ctr Fundamental & Appl Math, Moscow 119991, Russia
[3] Weizmann Inst Sci, IL-7610001 Rehovot, Israel
基金
以色列科学基金会;
关键词
Permanent; Rank; Linear map; Preservers; TRANSFORMATIONS; INVARIANCE; OPERATORS; MATRICES;
D O I
10.1016/j.laa.2023.10.016
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let Mat(n)(F) denote the set of square n x n matrices over a field F of characteristic different from two. The permanental rank prk (A) of a matrix A is an element of Mat(n)(F) is the size of the maximal square submatrix in A with nonzero permanent. By Lambda(k) and A <= k we denote the subsets of matrices A is an element of Mat(n)(F) with prk (A) = k and prk (A) < k, respectively. In this paper for each 1 <= k <= n -1 we obtain a complete characterization of linear maps T : Mat(n)(F)-+ Mat(n)(F) satisfying T(Lambda (<= k)) = Lambda (<= k )or bijective linear maps satisfying T(Lambda (<= k)) C Lambda (<= k). Moreover, we show that if F is an infinite field, then Lambda(k) is Zariski dense in Lambda (<= k) and apply this to describe such bijective linear maps satisfying T(Lambda(k)) subset of Lambda(k).(c) 2023 Elsevier Inc. All rights reserved.
引用
收藏
页码:325 / 340
页数:16
相关论文
共 26 条