Site response analysis: Uncertain motions propagating through uncertain elastoplastic soil

被引:1
作者
Wang, Hexiang [1 ]
Wang, Fangbo [2 ]
Yang, Han [2 ]
Jeremic, Boris [3 ]
机构
[1] Berkshire Hathaway Specialty Insurance, San Ramon, CA USA
[2] Tianjin Univ, Tianjin, Peoples R China
[3] Univ Calif Davis, Davis, CA 95616 USA
关键词
Site response analysis; Stochastic ground motions; Nonlinear site effects; Time domain; Stochastic FEM; SEISMIC-HAZARD ANALYSIS; EMPIRICAL FOURIER; SIMULATION; MODELS;
D O I
10.1016/j.nucengdes.2023.112706
中图分类号
TL [原子能技术]; O571 [原子核物理学];
学科分类号
0827 ; 082701 ;
摘要
Presented is a stochastic site response analysis of uncertain seismic motions propagating through uncertain elastoplastic soil. Time domain stochastic bedrock motions are simulated from GMPE of Fourier amplitude spectra and Fourier phase derivative. The uncertain motions are directly modeled as a non-stationary random process in the time domain, capturing all the important seismic characteristics. Uncertain heterogeneous parameters for the elastoplastic behavior of soils are also considered and modeled as random fields. Both uncertain motions and uncertain material parameters are discretized in the probabilistic space using orthogonal Hermite polynomial chaos basis. The probabilistic site response is efficiently solved using Galerkin stochastic elastoplastic finite element method, circumventing Monte Carlo simulations. The implication of the presented methodology for site-specific probabilistic seismic hazard analysis is discussed as well.
引用
收藏
页数:9
相关论文
共 34 条
[11]   Simulation of ground motion using the stochastic method [J].
Boore, DM .
PURE AND APPLIED GEOPHYSICS, 2003, 160 (3-4) :635-676
[12]   NGA-West2 Empirical Fourier and Duration Models to Generate Adjustable Response Spectra [J].
Bora, Sanjay Singh ;
Cotton, Fabrice ;
Scherbaum, Frank .
EARTHQUAKE SPECTRA, 2019, 35 (01) :61-93
[13]   Development of a Response Spectral Ground-Motion Prediction Equation (GMPE) for Seismic-Hazard Analysis from Empirical Fourier Spectral and Duration Models [J].
Bora, Sanjay Singh ;
Scherbaum, Frank ;
Kuehn, Nicolas ;
Stafford, Peter ;
Edwards, Benjamin .
BULLETIN OF THE SEISMOLOGICAL SOCIETY OF AMERICA, 2015, 105 (04) :2192-2218
[14]  
Chopra AK, 2000, Dynamics of Structures. Theory and Application to Earthquake Engineering, DOI DOI 10.1193/1.2720354
[15]  
Ghanem R. G., 1991, Stochastic Finite Elements: A Spectral Approach, P101
[16]   Numerical solution of spectral stochastic finite element systems [J].
Ghanem, RG ;
Kruger, RM .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 1996, 129 (03) :289-303
[17]   Comparison of NGA-West2 GMPEs [J].
Gregor, Nick ;
Abrahamson, Norman A. ;
Atkinson, Gail M. ;
Boore, David M. ;
Bozorgnia, Yousef ;
Campbell, Kenneth W. ;
Chiou, Brian S. -J. ;
Idriss, I. M. ;
Kamai, Ronnie ;
Seyhan, Emel ;
Silva, Walter ;
Stewart, Jonathan P. ;
Youngs, Robert .
EARTHQUAKE SPECTRA, 2014, 30 (03) :1179-1197
[18]  
Jeremic B, 1988, The real-ESSI simulator system
[19]  
Jeremic Boris., 1989, Nonlinear Finite Elements: Modeling and Simulation of Earthquakes, Soils, Structures and their Interaction
[20]   Nonlinear Horizontal Site Amplification for Constraining the NGA-West2 GMPEs [J].
Kamai, Ronnie ;
Abrahamson, Norman A. ;
Silva, Walter J. .
EARTHQUAKE SPECTRA, 2014, 30 (03) :1223-1240