Diagnosing weakly first-order phase transitions by coupling to order parameters

被引:13
作者
D'Emidio, Jonathan [1 ]
Eberharter, Alexander A. [2 ]
Lauchli, Andreas M. [3 ,4 ]
机构
[1] Donostia Int Phys Ctr, Donostia San Sebastian 20018, Spain
[2] Univ Innsbruck, Inst Theoret Phys, A-6020 Innsbruck, Austria
[3] Paul Scherrer Inst, Lab Theoret & Computat Phys, CH-5232 Villigen, Switzerland
[4] Ecole Polytech Fed Lausanne EPFL, Inst Phys, CH-1015 Lausanne, Switzerland
基金
奥地利科学基金会;
关键词
POTTS-MODEL; LENGTH;
D O I
10.21468/SciPostPhys.15.2.061
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The hunt for exotic quantum phase transitions described by emergent fractionalized de-grees of freedom coupled to gauge fields requires a precise determination of the fixed point structure from the field theoretical side, and an extreme sensitivity to weak first -order transitions from the numerical side. Addressing the latter, we revive the classic definition of the order parameter in the limit of a vanishing external field at the transi-tion. We demonstrate that this widely understood, yet so far unused approach provides a diagnostic test for first-order versus continuous behavior that is distinctly more sensi-tive than current methods. We first apply it to the family of Q-state Potts models, where the nature of the transition is continuous for Q & LE; 4 and turns (weakly) first order for Q > 4, using an infinite system matrix product state implementation. We then employ this new approach to address the unsettled question of deconfined quantum criticality in the S = 1/2 Neel to valence bond solid transition in two dimensions, focusing on the square lattice J -Q model. Our quantum Monte Carlo simulations reveal that both order parameters remain finite at the transition, directly confirming a first-order scenario with wide reaching implications in condensed matter and quantum field theory.
引用
收藏
页数:24
相关论文
共 63 条
[1]   Phase diagram of a frustrated quantum antiferromagnet on the honeycomb lattice: Magnetic order versus valence-bond crystal formation [J].
Albuquerque, A. F. ;
Schwandt, D. ;
Hetenyi, B. ;
Capponi, S. ;
Mambrini, M. ;
Laeuchli, A. M. .
PHYSICAL REVIEW B, 2011, 84 (02)
[2]   Pinning the Order: The Nature of Quantum Criticality in the Hubbard Model on Honeycomb Lattice [J].
Assaad, Fakher F. ;
Herbut, Igor F. .
PHYSICAL REVIEW X, 2013, 3 (03)
[3]   MAGNETIZATION DISCONTINUITY OF THE TWO-DIMENSIONAL POTTS-MODEL [J].
BAXTER, RJ .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1982, 15 (10) :3329-3340
[4]   POTTS MODEL AT CRITICAL-TEMPERATURE [J].
BAXTER, RJ .
JOURNAL OF PHYSICS C-SOLID STATE PHYSICS, 1973, 6 (23) :L445-L448
[5]   FINITE-SIZE SCALING AT 1ST-ORDER PHASE-TRANSITIONS [J].
BINDER, K ;
LANDAU, DP .
PHYSICAL REVIEW B, 1984, 30 (03) :1477-1485
[6]   Fate of CPN-1 Fixed Points with q Monopoles [J].
Block, Matthew S. ;
Melko, Roger G. ;
Kaul, Ribhu K. .
PHYSICAL REVIEW LETTERS, 2013, 111 (13)
[7]  
BUFFENOIR E, 1993, J PHYS A-MATH GEN, V26, P3045
[8]   Critical exponents and equation of state of the three-dimensional Heisenberg universality class [J].
Campostrini, M ;
Hasenbusch, M ;
Pelissetto, A ;
Rossi, P ;
Vicari, E .
PHYSICAL REVIEW B, 2002, 65 (14) :1-21
[9]   SCALING THEORY OF THE POTTS-MODEL MULTICRITICAL POINT [J].
CARDY, JL ;
NAUENBERG, M ;
SCALAPINO, DJ .
PHYSICAL REVIEW B, 1980, 22 (05) :2560-2568
[10]   Deconfined Criticality Flow in the Heisenberg Model with Ring-Exchange Interactions [J].
Chen, Kun ;
Huang, Yuan ;
Deng, Youjin ;
Kuklov, A. B. ;
Prokof'ev, N. V. ;
Svistunov, B. V. .
PHYSICAL REVIEW LETTERS, 2013, 110 (18)