Reconstruction of small subunit ribosomal RNA from high-throughput sequencing data: A comparative study of metagenomics and total RNA sequencing

被引:1
|
作者
Hempel, Christopher A. [1 ,2 ]
Carson, Shea E. E. [1 ]
Elliott, Tyler A. [1 ]
Adamowicz, Sarah J. [1 ]
Steinke, Dirk [1 ,2 ]
机构
[1] Univ Guelph, Dept Integrat Biol, Guelph, ON, Canada
[2] Univ Guelph, Ctr Biodivers Genom, Guelph, ON, Canada
来源
METHODS IN ECOLOGY AND EVOLUTION | 2023年 / 14卷 / 08期
基金
加拿大自然科学与工程研究理事会;
关键词
bioinformatics; data processing tool benchmarking; metagenomics; metatranscriptomics; microbial identification; mock community; small subunit ribosomal RNA; total RNA sequencing; ALIGNMENT; 16S; METATRANSCRIPTOMICS; CLASSIFICATION; MICROBIOME; ASSEMBLER; SEQ;
D O I
10.1111/2041-210X.14149
中图分类号
Q14 [生态学(生物生态学)];
学科分类号
071012 ; 0713 ;
摘要
The small subunit (SSU) ribosomal RNA (rRNA) is the most commonly used marker for the identification of microbial taxa, but its full-length reconstruction from high-throughput sequencing (HTS) data remains challenging. Metagenomics and total RNA sequencing (total RNA-Seq) are target-PCR-free HTS methods that are used to characterize microbial communities and simultaneously reconstruct SSU rRNA sequences. However, more testing is required to determine and improve their effectiveness. We processed metagenomics and total RNA-Seq data retrieved from a commercially available mock microbial community and an aquarium sample using 112 combinations of data processing tools. We determined the SSU rRNA reconstruction completeness of both sequencing methods for both samples and analysed the impact of data processing tools on SSU rRNA completeness. In contrast to metagenomics, total RNA-Seq allowed for the complete or near-complete reconstruction of all mock community SSU rRNA sequences and generated up to 438 SSU rRNA sequences with & GE;80% completeness from the aquarium sample using only 1/5 of an Illumina MiSeq run. SSU rRNA completeness of metagenomics significantly correlated with the genome size of mock community species. Data processing tools impacted SSU rRNA completeness, in particular the utilized assemblers. These results are promising for the high-throughput reconstruction of novel full-length SSU rRNA sequences and could advance the simultaneous application of multiple -omics approaches in routine environmental assessments to allow for more holistic assessments of ecosystems.
引用
收藏
页码:2049 / 2064
页数:16
相关论文
共 50 条
  • [31] The simple fool's guide to population genomics via RNA-Seq: an introduction to high-throughput sequencing data analysis
    De Wit, Pierre
    Pespeni, Melissa H.
    Ladner, Jason T.
    Barshis, Daniel J.
    Seneca, Francois
    Jaris, Hannah
    Therkildsen, Nina Overgaard
    Morikawa, Megan
    Palumbi, Stephen R.
    MOLECULAR ECOLOGY RESOURCES, 2012, 12 (06) : 1058 - 1067
  • [32] Metagenomics versus total RNA sequencing: most accurate data-processing tools, microbial identification accuracy and perspectives for ecological assessments
    Hempel, Christopher A.
    Wright, Natalie
    Harvie, Julia
    Hleap, Jose S.
    Adamowicz, Sarah J.
    Steinke, Dirk
    NUCLEIC ACIDS RESEARCH, 2022, 50 (16) : 9279 - 9293
  • [33] Hybridization-based reconstruction of small non-coding RNA transcripts from deep sequencing data
    Ragan, Chikako
    Mowry, Bryan J.
    Bauer, Denis C.
    NUCLEIC ACIDS RESEARCH, 2012, 40 (16) : 7633 - 7643
  • [34] PLNseq: a multivariate Poisson lognormal distribution for high-throughput matched RNA-sequencing read count data
    Zhang, Hong
    Xu, Jinfeng
    Jiang, Ning
    Hu, Xiaohua
    Luo, Zewei
    STATISTICS IN MEDICINE, 2015, 34 (09) : 1577 - 1589
  • [35] Quality assessment and control of high-throughput sequencing data
    Watson, Mick
    FRONTIERS IN GENETICS, 2014, 5
  • [36] Common Fusion Transcripts Identified in Colorectal Cancer Cell Lines by High-Throughput RNA Sequencing
    Nome, Torfinn
    Thomassen, Gard O. S.
    Bruun, Jarle
    Ahlquist, Terje
    Bakken, Anne C.
    Hoff, Andreas M.
    Rognum, Torleiv
    Nesbakken, Arild
    Lorenz, Susanne
    Sun, Jinchang
    Barros-Silva, Joao Diogo
    Lind, Guro E.
    Myklebost, Ola
    Teixeira, Manuel R.
    Meza-Zepeda, Leonardo A.
    Lothe, Ragnhild A.
    Skotheim, Rolf I.
    TRANSLATIONAL ONCOLOGY, 2013, 6 (05): : 546 - +
  • [37] High-throughput RNA interference screening using pooled shRNA libraries and next generation sequencing
    Sims, David
    Mendes-Pereira, Ana M.
    Frankum, Jessica
    Burgess, Darren
    Cerone, Maria-Antonietta
    Lombardelli, Cristina
    Mitsopoulos, Costas
    Hakas, Jarle
    Murugaesu, Nirupa
    Isacke, Clare M.
    Fenwick, Kerry
    Assiotis, Ioannis
    Kozarewa, Iwanka
    Zvelebil, Marketa
    Ashworth, Alan
    Lord, Christopher J.
    GENOME BIOLOGY, 2011, 12 (10):
  • [38] A Primer on the Analysis of High-Throughput Sequencing Data for Detection of Plant Viruses
    Kutnjak, Denis
    Tamisier, Lucie
    Adams, Ian
    Boonham, Neil
    Candresse, Thierry
    Chiumenti, Michela
    De Jonghe, Kris
    Kreuze, Jan F.
    Lefebvre, Marie
    Silva, Goncalo
    Malapi-Wight, Martha
    Margaria, Paolo
    Plesko, Irena Mavriric
    McGreig, Sam
    Miozzi, Laura
    Remenant, Benoit
    Reynard, Jean-Sebastien
    Rollin, Johan
    Rott, Mike
    Schumpp, Olivier
    Massart, Sebastien
    Haegeman, Annelies
    MICROORGANISMS, 2021, 9 (04)
  • [39] Fusion transcripts and their genomic breakpoints in polyadenylated and ribosomal RNA-minus RNA sequencing data
    Hoogstrate, Youri
    Komor, Malgorzata A.
    Bottcher, Rene
    van Riet, Job
    van de Werken, Harmen J. G.
    van Lieshout, Stef
    Hoffmann, Ralf
    van den Broek, Evert
    Bolijn, Anne S.
    Dits, Natasja
    Sie, Daoud
    van der Meer, David
    Pepers, Floor
    Bangma, Chris H.
    van Leenders, Geert J. L. H.
    Smid, Marcel
    French, Pim J.
    Martens, John W. M.
    van Workum, Wilbert
    van der Spek, Peter J.
    Janssen, Bart
    Caldenhoven, Eric
    Rausch, Christian
    de Jong, Mark
    Stubbs, Andrew P.
    Meijer, Gerrit A.
    Fijneman, Remond J. A.
    Jenster, Guido W.
    GIGASCIENCE, 2021, 10 (12):
  • [40] Integrated Bioinformatics and Information Technology Platform for High-Throughput Sequencing in Microbial Metagenomics Based on Big Data Processing
    Zhao, Shuo
    Zhang, Lijia
    Hu, Zhengyi
    JOURNAL OF MEDICAL IMAGING AND HEALTH INFORMATICS, 2018, 8 (02) : 325 - 330