Reconstruction of small subunit ribosomal RNA from high-throughput sequencing data: A comparative study of metagenomics and total RNA sequencing

被引:1
作者
Hempel, Christopher A. [1 ,2 ]
Carson, Shea E. E. [1 ]
Elliott, Tyler A. [1 ]
Adamowicz, Sarah J. [1 ]
Steinke, Dirk [1 ,2 ]
机构
[1] Univ Guelph, Dept Integrat Biol, Guelph, ON, Canada
[2] Univ Guelph, Ctr Biodivers Genom, Guelph, ON, Canada
来源
METHODS IN ECOLOGY AND EVOLUTION | 2023年 / 14卷 / 08期
基金
加拿大自然科学与工程研究理事会;
关键词
bioinformatics; data processing tool benchmarking; metagenomics; metatranscriptomics; microbial identification; mock community; small subunit ribosomal RNA; total RNA sequencing; ALIGNMENT; 16S; METATRANSCRIPTOMICS; CLASSIFICATION; MICROBIOME; ASSEMBLER; SEQ;
D O I
10.1111/2041-210X.14149
中图分类号
Q14 [生态学(生物生态学)];
学科分类号
071012 ; 0713 ;
摘要
The small subunit (SSU) ribosomal RNA (rRNA) is the most commonly used marker for the identification of microbial taxa, but its full-length reconstruction from high-throughput sequencing (HTS) data remains challenging. Metagenomics and total RNA sequencing (total RNA-Seq) are target-PCR-free HTS methods that are used to characterize microbial communities and simultaneously reconstruct SSU rRNA sequences. However, more testing is required to determine and improve their effectiveness. We processed metagenomics and total RNA-Seq data retrieved from a commercially available mock microbial community and an aquarium sample using 112 combinations of data processing tools. We determined the SSU rRNA reconstruction completeness of both sequencing methods for both samples and analysed the impact of data processing tools on SSU rRNA completeness. In contrast to metagenomics, total RNA-Seq allowed for the complete or near-complete reconstruction of all mock community SSU rRNA sequences and generated up to 438 SSU rRNA sequences with & GE;80% completeness from the aquarium sample using only 1/5 of an Illumina MiSeq run. SSU rRNA completeness of metagenomics significantly correlated with the genome size of mock community species. Data processing tools impacted SSU rRNA completeness, in particular the utilized assemblers. These results are promising for the high-throughput reconstruction of novel full-length SSU rRNA sequences and could advance the simultaneous application of multiple -omics approaches in routine environmental assessments to allow for more holistic assessments of ecosystems.
引用
收藏
页码:2049 / 2064
页数:16
相关论文
共 78 条
[51]   The SILVA ribosomal RNA gene database project: improved data processing and web-based tools [J].
Quast, Christian ;
Pruesse, Elmar ;
Yilmaz, Pelin ;
Gerken, Jan ;
Schweer, Timmy ;
Yarza, Pablo ;
Peplies, Joerg ;
Gloeckner, Frank Oliver .
NUCLEIC ACIDS RESEARCH, 2013, 41 (D1) :D590-D596
[52]   Shotgun metagenomics, from sampling to analysis (35, pg 833, 2017) [J].
Quince, Christopher ;
Walker, Alan W. ;
Simpson, Jared T. ;
Loman, Nicholas J. ;
Segata, Nicola .
NATURE BIOTECHNOLOGY, 2017, 35 (09) :833-844
[53]   De novo assembly and analysis of RNA-seq data [J].
Robertson, Gordon ;
Schein, Jacqueline ;
Chiu, Readman ;
Corbett, Richard ;
Field, Matthew ;
Jackman, Shaun D. ;
Mungall, Karen ;
Lee, Sam ;
Okada, Hisanaga Mark ;
Qian, Jenny Q. ;
Griffith, Malachi ;
Raymond, Anthony ;
Thiessen, Nina ;
Cezard, Timothee ;
Butterfield, Yaron S. ;
Newsome, Richard ;
Chan, Simon K. ;
She, Rong ;
Varhol, Richard ;
Kamoh, Baljit ;
Prabhu, Anna-Liisa ;
Tam, Angela ;
Zhao, YongJun ;
Moore, Richard A. ;
Hirst, Martin ;
Marra, Marco A. ;
Jones, Steven J. M. ;
Hoodless, Pamela A. ;
Birol, Inanc .
NATURE METHODS, 2010, 7 (11) :909-U62
[54]   Expanding ecological assessment by integrating microorganisms into routine freshwater biomonitoring [J].
Sagova-Mareckova, M. ;
Boenigk, J. ;
Bouchez, A. ;
Cermakova, K. ;
Chonova, T. ;
Cordier, T. ;
Eisendle, U. ;
Elersek, T. ;
Fazi, S. ;
Fleituch, T. ;
Fruhe, L. ;
Gajdosova, M. ;
Graupner, N. ;
Haegerbaeumer, A. ;
Kelly, A. -M. ;
Kopecky, J. ;
Leese, F. ;
Noges, P. ;
Orlic, S. ;
Panksep, K. ;
Pawlowski, J. ;
Petrusek, A. ;
Piggott, J. J. ;
Rusch, J. C. S. ;
Salis, R. ;
Schenk, J. ;
Simek, K. ;
Stovicek, A. ;
Strand, D. A. ;
Vasquez, M. I. ;
Vralstad, T. ;
Zlatkovic, S. ;
Zupancic, M. ;
Stoeck, T. .
WATER RESEARCH, 2021, 191
[55]  
Seabold S., 2010, 9 PYTH SCI C, P92, DOI 10.25080/Majora-92bf1922-011
[56]   Advances and Challenges in Metatranscriptomic Analysis [J].
Shakya, Migun ;
Lo, Chien-Chi ;
Chain, Patrick S. G. .
FRONTIERS IN GENETICS, 2019, 10
[57]   Integrated metatranscriptomic and metagenomic analyses of stratified microbial assemblages in the open ocean [J].
Shi, Yanmei ;
Tyson, Gene W. ;
Eppley, John M. ;
DeLong, Edward F. .
ISME JOURNAL, 2011, 5 (06) :999-1013
[58]   High-resolution phylogenetic microbial community profiling [J].
Singer, Esther ;
Bushnell, Brian ;
Coleman-Derr, Devin ;
Bowman, Brett ;
Bowers, Robert M. ;
Levy, Asaf ;
Gies, Esther A. ;
Cheng, Jan-Fang ;
Copeland, Alex ;
Klenk, Hans-Peter ;
Hallam, Steven J. ;
Hugenholtz, Philip ;
Tringe, Susannah G. ;
Woyke, Tanja .
ISME JOURNAL, 2016, 10 (08) :2020-2032
[59]   Natural Bacterial Communities Serve as Quantitative Geochemical Biosensors [J].
Smith, Mark B. ;
Rocha, Andrea M. ;
Smillie, Chris S. ;
Olesen, Scott W. ;
Paradis, Charles ;
Wu, Liyou ;
Campbell, James H. ;
Fortney, Julian L. ;
Mehlhorn, Tonia L. ;
Lowe, Kenneth A. ;
Earles, Jennifer E. ;
Phillips, Jana ;
Techtmann, Steve M. ;
Joyner, Dominique C. ;
Elias, Dwayne A. ;
Bailey, Kathryn L. ;
Hurt, Richard A., Jr. ;
Preheim, Sarah P. ;
Sanders, Matthew C. ;
Yang, Joy ;
Mueller, Marcella A. ;
Brooks, Scott ;
Watson, David B. ;
Zhang, Ping ;
He, Zhili ;
Dubinsky, Eric A. ;
Adams, Paul D. ;
Arkin, Adam P. ;
Fields, Matthew W. ;
Zhou, Jizhong ;
Alm, Eric J. ;
Hazen, Terry C. .
MBIO, 2015, 6 (03) :1-13
[60]   Perspectives and Benefits of High-Throughput Long-Read Sequencing in Microbial Ecology [J].
Tedersoo, Leho ;
Albertsen, Math ;
Anslan, Sten ;
Callahan, Benjamin .
APPLIED AND ENVIRONMENTAL MICROBIOLOGY, 2021, 87 (17) :1-19