Marginal Likelihood Computation for Model Selection and Hypothesis Testing: An Extensive Review

被引:25
|
作者
Llorente, F. [1 ]
Martino, L. [2 ]
Delgado, D. [1 ]
Lopez-Santiago, J. [1 ]
机构
[1] Univ Carlos III Madrid, Dept Stat, Madrid 28911, Spain
[2] Univ Rey Juan Carlos, Dept Signal Proc, Madrid, Spain
关键词
marginal likelihood; Bayesian evidence; numerical integration; model selection; hypothe-sis testing; quadrature rules; doubly intractable posteriors; partition functions; MONTE-CARLO METHODS; BAYESIAN MODEL; NORMALIZING CONSTANTS; CHOICE; SIMULATION; INFERENCE; RATIOS;
D O I
10.1137/20M1310849
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This is an up-to-date introduction to, and overview of, marginal likelihood computation for model selection and hypothesis testing. Computing normalizing constants of probability models (or ratios of constants) is a fundamental issue in many applications in statistics, applied mathematics, signal processing, and machine learning. This article provides a comprehensive study of the state of the art of the topic. We highlight limitations, bene-fits, connections, and differences among the different techniques. Problems and possible solutions with the use of improper priors are also described. Some of the most relevant methodologies are compared through theoretical comparisons and numerical experiments.
引用
收藏
页码:3 / 58
页数:56
相关论文
共 50 条
  • [31] Marginal likelihood estimation for the negative binomial INGARCH model
    Pei, Jian
    Zhu, Fukang
    COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2024, 53 (04) : 1814 - 1823
  • [32] Hidden Gibbs random fields model selection using Block Likelihood Information Criterion
    Stoehr, Julien
    Marin, Jean-Michel
    Pudlo, Pierre
    STAT, 2016, 5 (01): : 158 - 172
  • [33] P values, hypothesis testing, and model selection: it's deja vu all over again1
    Ellison, Aaron M.
    Gotelli, Nicholas J.
    Inouye, Brian D.
    Strong, Donald R.
    ECOLOGY, 2014, 95 (03) : 609 - 610
  • [34] Model selection in time series analysis: using information criteria as an alternative to hypothesis testing
    Hacker, R. Scott
    Hatemi-J, Abdulnasser
    JOURNAL OF ECONOMIC STUDIES, 2022, 49 (06) : 1055 - 1075
  • [35] Pairwise- and marginal-likelihood estimation for the mixed Rasch model with binary data
    Feddag, M. -L.
    Hardouin, J. -B.
    Sebille, V.
    JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 2012, 82 (03) : 419 - 430
  • [36] Fuzzy hypothesis testing with vague data using likelihood ratio test
    Alizadeh, H. Moheb
    Khamseh, A. R. Arshadi
    Ghomi, S. M. T. Fatemi
    SOFT COMPUTING, 2013, 17 (09) : 1629 - 1641
  • [37] Fuzzy hypothesis testing with vague data using likelihood ratio test
    H. Moheb Alizadeh
    A. R. Arshadi Khamseh
    S. M. T. Fatemi Ghomi
    Soft Computing, 2013, 17 : 1629 - 1641
  • [38] ROBUSTNESS OF MARGINAL MAXIMUM-LIKELIHOOD-ESTIMATION IN THE RASCH MODEL
    ZWINDERMAN, AH
    VANDENWOLLENBERG, AL
    APPLIED PSYCHOLOGICAL MEASUREMENT, 1990, 14 (01) : 73 - 81
  • [39] Targeted Maximum Likelihood Estimation of the Parameter of a Marginal Structural Model
    Rosenblum, Michael
    van der Laan, Mark J.
    INTERNATIONAL JOURNAL OF BIOSTATISTICS, 2010, 6 (02)
  • [40] A review and comparison of four commonly used Bayesian and maximum likelihood model selection tools
    Ward, Eric J.
    ECOLOGICAL MODELLING, 2008, 211 (1-2) : 1 - 10