An identification method for power grid error parameters based on sensitivity analysis and deep residual network

被引:1
作者
Wang, Jingjing [1 ]
Ye, Mingdong [2 ]
Xie, Dawei [1 ]
Wu, Xu [1 ]
Ding, Chao [1 ]
Peng, Wei [1 ]
Han, Wenzhi [3 ]
机构
[1] State Grid Anhui Elect Power Co Ltd, Hefei 230061, Peoples R China
[2] Hefei Univ Technol, Sch Elect Engn & Automat, Hefei 230009, Peoples R China
[3] Anhui Nanrui Jiyuan Elect Power Syst Tech Co Ltd, Hefei 230088, Peoples R China
关键词
Sensitivity analysis; deep residual network; transmission line; parameter identification; error propagation; TRANSMISSION-LINE PARAMETERS;
D O I
10.1142/S1793962324410125
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
The planning, scheduling and operation decisions of the power grid depend on the calculation of the simulation model. Parameter errors in the grid model can lead to deviations between simulation calculations and actual grid operation. The strategy based on incorrect calculation data will lead to power outages in the actual power grid, which may cause significant economic losses and personal safety accidents. For the safe operation of power grid, a method for locating the wrong parameters of transmission line based on sensitivity analysis (SA) and deep residual network (DRN) is proposed. By calculating the sensitivity of apparent power to parameter error of each line in the power grid, the propagation characteristics of power flow error are analyzed quantitatively. An error region segmentation method is proposed to reduce the search range of error parameters from large-scale power grids to local networks which can reduce the computational complexity of the search algorithm, and increase accuracy. An error transmission line index for local power grids is proposed to identify error source in local power grids. Then, the specific wrong parameters are identified through the DRN. It can intelligently identify the error parameters from multiple parameters of the error transmission line. The calculation results of the 300-bus system verify the correctness and effectiveness of the proposed method.
引用
收藏
页数:23
相关论文
共 50 条
[21]   Residual stress identification in thin plates based on modal data and sensitivity analysis [J].
Huang, Ce ;
Wang, Li ;
Wang, Ke .
INTERNATIONAL JOURNAL OF SOLIDS AND STRUCTURES, 2022, 236-237
[22]   FPGA-based soft error sensitivity analysis method for microprocessor [J].
Liang H. ;
Sun H. ;
Sun J. ;
Huang Z. ;
Xu X. ;
Yi M. ;
Ouyang Y. ;
Lu Y. ;
Yan A. .
Dianzi Yu Xinxi Xuebao/Journal of Electronics and Information Technology, 2017, 39 (01) :245-249
[23]   Electromagnetic sensitivity analysis of scattering parameters based on the FDFD method [J].
Zhu, Xiaying ;
Hasib, Arshad ;
Nikolova, Natalia K. .
2007 INTERNATIONAL SYMPOSIUM ON SIGNALS, SYSTEMS AND ELECTRONICS, VOLS 1 AND 2, 2007, :159-162
[24]   Sensitivity analysis of key design parameters of commercial aircraft using deep neural network [J].
Fan Z. ;
Yu X. ;
Wang C. ;
Zhong B. .
Hangkong Xuebao/Acta Aeronautica et Astronautica Sinica, 2021, 42 (04)
[25]   Analysis on error sensitivity of in-motion alignment parameters [J].
Wang L. ;
Zhao Y. ;
Wen X. .
Zhongguo Guanxing Jishu Xuebao/Journal of Chinese Inertial Technology, 2018, 26 (06) :805-811
[26]   Sensitivity Analysis of Process Parameters Based on Adjoint Partial Derivative Network [J].
Zhang, Yanming ;
Dong, Le ;
Li, Yang ;
Li, Yangyang .
2022 23RD INTERNATIONAL CONFERENCE ON ELECTRONIC PACKAGING TECHNOLOGY, ICEPT, 2022,
[27]   Sensitivity analysis of the scattering parameters of microwave filters using the adjoint network method [J].
El Sabbagh, Mahmoud A. ;
Bakr, Mohamed H. ;
Nikolova, Natalia K. .
INTERNATIONAL JOURNAL OF RF AND MICROWAVE COMPUTER-AIDED ENGINEERING, 2006, 16 (06) :596-606
[28]   A HEM-Based Sensitivity Analysis Method for Fast Voltage Stability Assessment in Distribution Power Network [J].
Gao, Huimin ;
Chen, Jianlin ;
Diao, Ruisheng ;
Zhang, Jing .
IEEE ACCESS, 2021, 9 :13344-13353
[29]   A method of interval uncertain parameter identification based on a response surface model and sensitivity analysis [J].
Chen X. ;
Shen Z. ;
Liu X. .
Zhendong yu Chongji/Journal of Vibration and Shock, 2019, 38 (16) :267-273
[30]   Identification of Vulnerable Nodes and Sensitivity Analysis of Control Parameters for Multiple Grid-Connected Converter Systems [J].
Liu, Zhenxiang ;
Chen, Yanbo ;
Zhang, Zhi ;
Ma, Jiahao ;
Huang, Tao .
IEEE TRANSACTIONS ON SUSTAINABLE ENERGY, 2025, 16 (03) :1602-1612