Response of Erosive Precipitation to Vegetation Restoration and Its Effect on Soil and Water Conservation Over China's Loess Plateau

被引:30
|
作者
Zhang, Baoqing [1 ]
Tian, Lei [1 ,2 ]
He, Chansheng [1 ,3 ]
He, Xiaogang [4 ]
机构
[1] Lanzhou Univ, Coll Earth & Environm Sci, Key Lab Western Chinas Environm Syst, Minist Educ, Lanzhou, Peoples R China
[2] Lanzhou Univ, Inst Green Dev Yellow River Drainage Basin, Lanzhou, Peoples R China
[3] Western Michigan Univ, Dept Geog Environm & Tourism, Kalamazoo, MI USA
[4] Natl Univ Singapore, Dept Civil & Environm Engn, Queenstown, Singapore
基金
中国国家自然科学基金; 国家重点研发计划;
关键词
rainfall intensity; revegetation; soil erosion; land-atmosphere interactions; hydrometeorology; ecohydrology; MOISTURE; IMPACT; RAINFALL; WRF; PARAMETERIZATION; AFFORESTATION; REVEGETATION; REGIONS; AREA;
D O I
10.1029/2022WR033382
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Large-scale vegetation restoration profoundly affects ecohydrological and hydrometeorological processes with consequent effects on soil and water conservation. However, it is still unclear how revegetation affects the joint relationship between streamflow and sediment yield from the land-atmosphere interactions perspective. In this study, we combine in situ hydro-meteorological observations, satellite observed land surface characteristics, and coupled land-atmosphere model simulations to address this knowledge gap through a case study focusing on the Loess Plateau, where a megaproject of revegetation has been implemented since 2000. We find that historical annual streamflow and sediment yield have decreased over the Loess Plateau and 12 main revegetated basins, mainly due to enhanced canopy transpiration and soil conservation functions of revegetation. However, the magnitude of sediment yield reduction is much higher than that of streamflow for both mainstream and tributaries of the Yellow River. Specifically, the mean decreasing rate of sediment yield is 2.91 times of streamflow in the mainstream Yellow River, while for tributaries, the mean decline rate of sediment yield is 1.71 times of streamflow. Despite increases in total precipitation amount, erosive precipitation exhibits a clear downward trend over the Loess Plateau after the large-scale revegetation (2000-2015). This is mainly driven by enhanced local moisture recycling caused by revegetation-induced redistribution of water and energy budgets. Decreases in erosive precipitation frequency coupled with increased precipitation amount enhance streamflow availability and simultaneously mitigate soil erosion. Our findings highlight the importance of factoring in the two-way feedbacks between revegetation and erosive precipitation when planning soil and water conservation.
引用
收藏
页数:15
相关论文
共 50 条
  • [21] Changes in soil properties and erodibility of gully heads induced by vegetation restoration on the Loess Plateau, China
    GUO Mingming
    WANG Wenlong
    KANG Hongliang
    YANG Bo
    Journal of Arid Land, 2018, 10 (05) : 712 - 725
  • [22] Spatial variation in soil water on a hillslope with ephemeral gullies restored by different vegetation restoration modes on the Loess Plateau
    Wang, Hao
    Zhang, Qing-wei
    Wang, Jian
    CATENA, 2023, 224
  • [23] Response of soil water to long-term revegetation, topography, and precipitation on the Chinese Loess Plateau
    Chen, Mingyu
    Yang, Xueqin
    Zhang, Xutao
    Bai, Yue
    Shao, Ming 'an
    Wei, Xiaorong
    Jia, Yuhua
    Wang, Yunqiang
    Jia, Xiaoxu
    Zhu, Yuanjun
    Zhang, Qingyin
    Zhu, Xuchao
    Li, Tongchuan
    CATENA, 2024, 236
  • [24] Effects of precipitation and restoration vegetation on soil erosion in a semi-arid environment in the Loess Plateau, China
    Zhou, Ji
    Fu, Bojie
    Gao, Guangyao
    Lu, Yihe
    Liu, Yu
    Lu, Nan
    Wang, Shuai
    CATENA, 2016, 137 : 1 - 11
  • [25] Vegetation and species impacts on soil organic carbon sequestration following ecological restoration over the Loess Plateau, China
    Wang, Huanhuan
    Yue, Chao
    Mao, Qinqin
    Zhao, Jie
    Ciais, Philippe
    Li, Wei
    Yu, Qiang
    Mu, Xinmin
    GEODERMA, 2020, 371
  • [26] Soil erodibility as impacted by vegetation restoration strategies on the Loess Plateau of China
    Wang, Hao
    Zhang, Guang-hui
    Li, Ning-ning
    Zhang, Bao-jun
    Yang, Han-yue
    EARTH SURFACE PROCESSES AND LANDFORMS, 2019, 44 (03) : 796 - 807
  • [27] Effect of Grass Components on the Temporal Response of Surface Soil Water to Precipitation and Air Temperature in the Loess Plateau
    Liu, Jianbo
    Gao, Guangyao
    Chen, Weiliang
    Fang, Weiwei
    Su, Changhong
    Zhang, Bing
    AIR SOIL AND WATER RESEARCH, 2023, 16
  • [28] The coupling interaction of soil organic carbon stock and water storage after vegetation restoration on the Loess Plateau, China
    Chen, Yuxuan
    Wei, Tianxing
    Ren, Kang
    Sha, Guoliang
    Guo, Xin
    Fu, Yanchao
    Yu, Huan
    JOURNAL OF ENVIRONMENTAL MANAGEMENT, 2022, 306
  • [29] Effects of vegetation restoration on soil infiltrability and preferential flow in hilly gully areas of the Loess Plateau, China
    Qiu, Dexun
    Xu, Ruirui
    Wu, Changxue
    Mu, Xingmin
    Zhao, Guangju
    Gao, Peng
    CATENA, 2023, 221
  • [30] Seasonal dynamics of soil water content in the typical vegetation and its response to precipitation in a semi-arid area of Chinese Loess Plateau
    Zhou, Tairan
    Han, Chun
    Qiao, Linjie
    Ren, Chaojie
    Wen, Tao
    Zhao, Changming
    JOURNAL OF ARID LAND, 2021, 13 (10) : 1015 - 1025