Response of Erosive Precipitation to Vegetation Restoration and Its Effect on Soil and Water Conservation Over China's Loess Plateau

被引:30
|
作者
Zhang, Baoqing [1 ]
Tian, Lei [1 ,2 ]
He, Chansheng [1 ,3 ]
He, Xiaogang [4 ]
机构
[1] Lanzhou Univ, Coll Earth & Environm Sci, Key Lab Western Chinas Environm Syst, Minist Educ, Lanzhou, Peoples R China
[2] Lanzhou Univ, Inst Green Dev Yellow River Drainage Basin, Lanzhou, Peoples R China
[3] Western Michigan Univ, Dept Geog Environm & Tourism, Kalamazoo, MI USA
[4] Natl Univ Singapore, Dept Civil & Environm Engn, Queenstown, Singapore
基金
中国国家自然科学基金; 国家重点研发计划;
关键词
rainfall intensity; revegetation; soil erosion; land-atmosphere interactions; hydrometeorology; ecohydrology; MOISTURE; IMPACT; RAINFALL; WRF; PARAMETERIZATION; AFFORESTATION; REVEGETATION; REGIONS; AREA;
D O I
10.1029/2022WR033382
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Large-scale vegetation restoration profoundly affects ecohydrological and hydrometeorological processes with consequent effects on soil and water conservation. However, it is still unclear how revegetation affects the joint relationship between streamflow and sediment yield from the land-atmosphere interactions perspective. In this study, we combine in situ hydro-meteorological observations, satellite observed land surface characteristics, and coupled land-atmosphere model simulations to address this knowledge gap through a case study focusing on the Loess Plateau, where a megaproject of revegetation has been implemented since 2000. We find that historical annual streamflow and sediment yield have decreased over the Loess Plateau and 12 main revegetated basins, mainly due to enhanced canopy transpiration and soil conservation functions of revegetation. However, the magnitude of sediment yield reduction is much higher than that of streamflow for both mainstream and tributaries of the Yellow River. Specifically, the mean decreasing rate of sediment yield is 2.91 times of streamflow in the mainstream Yellow River, while for tributaries, the mean decline rate of sediment yield is 1.71 times of streamflow. Despite increases in total precipitation amount, erosive precipitation exhibits a clear downward trend over the Loess Plateau after the large-scale revegetation (2000-2015). This is mainly driven by enhanced local moisture recycling caused by revegetation-induced redistribution of water and energy budgets. Decreases in erosive precipitation frequency coupled with increased precipitation amount enhance streamflow availability and simultaneously mitigate soil erosion. Our findings highlight the importance of factoring in the two-way feedbacks between revegetation and erosive precipitation when planning soil and water conservation.
引用
收藏
页数:15
相关论文
共 50 条
  • [1] Feedbacks between vegetation restoration and local precipitation over the Loess Plateau in China
    Baoqing Zhang
    Lei Tian
    Xining Zhao
    Pute Wu
    Science China Earth Sciences, 2021, 64 : 920 - 931
  • [2] Feedbacks between vegetation restoration and local precipitation over the Loess Plateau in China
    Baoqing ZHANG
    Lei TIAN
    Xining ZHAO
    Pute WU
    ScienceChina(EarthSciences), 2021, 64 (06) : 920 - 931
  • [3] Feedbacks between vegetation restoration and local precipitation over the Loess Plateau in China
    Zhang, Baoqing
    Tian, Lei
    Zhao, Xining
    Wu, Pute
    SCIENCE CHINA-EARTH SCIENCES, 2021, 64 (06) : 920 - 931
  • [4] Understanding the balance between soil conservation and soil water storage capacity during the process of vegetation restoration in semi-arid watersheds in the Loess Plateau, China
    Yu, Yang
    Zhu, Ruipeng
    Liu, Dianjun
    Gao, Zhiqiang
    Zhao, Jiongchang
    Ma, Daoming
    Wang, Liping
    Rodrigo-Comino, Jesus
    LAND DEGRADATION & DEVELOPMENT, 2023, 34 (18) : 5805 - 5815
  • [5] Effect of vegetation restoration type and topography on soil water storage and infiltration capacity in the Loess Plateau, China
    Qiu, Dexun
    Xu, Ruirui
    Gao, Peng
    Mu, Xingmin
    CATENA, 2024, 241
  • [6] Response of soil water dynamics to precipitation years under different vegetation types on the northern Loess Plateau, China
    Liu Bingxia
    Shao Ming'an
    JOURNAL OF ARID LAND, 2016, 8 (01) : 47 - 59
  • [7] Assessing the feedback relationship between vegetation and soil moisture over the Loess Plateau, China
    Wei, Xiaoting
    Huang, Qiang
    Huang, Shengzhi
    Leng, Guoyong
    Qu, Yanping
    Deng, Mingjiang
    Han, Zhiming
    Zhao, Jing
    Liu, Dong
    Bai, Qingjun
    ECOLOGICAL INDICATORS, 2022, 134
  • [8] Decline in soil moisture due to vegetation restoration on the Loess Plateau of China
    Su, Bingqian
    Shangguan, Zhouping
    LAND DEGRADATION & DEVELOPMENT, 2019, 30 (03) : 290 - 299
  • [9] Soil erodibility affected by vegetation restoration on steep gully slopes on the Loess Plateau of China
    Zhang, Bao-jun
    Zhang, Guang-hui
    Yang, Han-yue
    Wang, Hao
    Li, Ning-ning
    SOIL RESEARCH, 2018, 56 (07) : 712 - 723
  • [10] Quantifying spatiotemporal variations in soil moisture driven by vegetation restoration on the Loess Plateau of China
    Qiu, Linjing
    Wu, Yiping
    Shi, Zhaoyang
    Yu, Mengzhen
    Zhao, Fubo
    Guan, Yinghui
    JOURNAL OF HYDROLOGY, 2021, 600