Dynamic graph-based attribute reduction approach with fuzzy rough sets

被引:2
|
作者
Ma, Lei [1 ]
Luo, Chuan [1 ]
Li, Tianrui [2 ]
Chen, Hongmei [2 ]
Liu, Dun [3 ]
机构
[1] Sichuan Univ, Coll Comp Sci, Chengdu 610065, Peoples R China
[2] Southwest Jiaotong Univ, Sch Comp & Artificial Intelligence, Chengdu 611756, Peoples R China
[3] Southwest Jiaotong Univ, Sch Econ & Management, Chengdu 610031, Peoples R China
基金
中国国家自然科学基金;
关键词
Fuzzy rough sets; Attribute reduction; Graph; Dynamic data; Incremental learning; FEATURE-SELECTION; INCREMENTAL APPROACH; KNOWLEDGE; MODEL;
D O I
10.1007/s13042-023-01846-1
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Incremental datasets are becoming increasingly common as interesting data are continually accumulated across various application fields. Selecting informative attributes from dynamically changing datasets poses numerous challenges. Completely reapplying the attribute reduction algorithm to detect the changes in the data and learn the selected attributes following frequently changing data is prohibitively expensive. In this regard, an incremental processing mechanism is desired to facilitate progressively updating the attribute reducts when the data is updated. In this paper, we consider the maintenance of the fuzzy rough attribute reduction in dynamic data that is changing through the arrival of samples. Based on the transformation of attribute reduction in a fuzzy decision system into the minimal transversal of a derivative hypergraph, a novel dynamic fuzzy rough attribute reduction approach is presented from a graph-theoretic perspective, so as to facilitate efficient computation of reduct in incremental datasets. Extensive experimental evaluation shows that the proposed dynamic graph-based fuzzy rough approach provides significantly faster attribute reduction than completely re-reduction by its original static counterpart as well as the existing dynamic attribute reduction approach based on fuzzy discernibility matrix, and is also effective in preserving the quality of the selected reduct.
引用
收藏
页码:3501 / 3516
页数:16
相关论文
共 50 条
  • [21] A graph approach for fuzzy -rough feature selection
    Chen, Jinkun
    Mi, Jusheng
    Lin, Yaojin
    FUZZY SETS AND SYSTEMS, 2020, 391 : 96 - 116
  • [22] Attribute reduction in an incomplete categorical decision information system based on fuzzy rough sets
    Jiali He
    Liangdong Qu
    Zhihong Wang
    Yiying Chen
    Damei Luo
    Ching-Feng Wen
    Artificial Intelligence Review, 2022, 55 : 5313 - 5348
  • [23] Extended rough sets model based on fuzzy granular ball and its attribute reduction
    Ji, Xia
    Peng, JianHua
    Zhao, Peng
    Yao, Sheng
    INFORMATION SCIENCES, 2023, 640
  • [24] Attribute reduction in an incomplete categorical decision information system based on fuzzy rough sets
    He, Jiali
    Qu, Liangdong
    Wang, Zhihong
    Chen, Yiying
    Luo, Damei
    Ching-Feng Wen
    ARTIFICIAL INTELLIGENCE REVIEW, 2022, 55 (07) : 5313 - 5348
  • [25] WalkNAR: A neighborhood rough sets-based attribute reduction approach using random walk
    Li, Haibo
    Xiong, Wuyang
    Li, Yanbin
    Xie, Xiaojun
    APPLIED INTELLIGENCE, 2024, : 7099 - 7117
  • [26] Fuzzy Rough Clustering Analysis Algorithm Based on Attribute Reduction
    Ouyang, Hao
    Wang, Zhi Wen
    Huang, Zhen Jin
    Hu, Wei Ping
    PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON SENSING AND IMAGING, 2018, 2019, 606 : 1 - 13
  • [27] Entropy Based Attribute Reduction Algorithms for Rough Sets
    Yan, Hua
    MATERIALS, MECHANICAL ENGINEERING AND MANUFACTURE, PTS 1-3, 2013, 268-270 : 1859 - 1862
  • [28] Attribute Reduction Algorithm Based on Rough Vague Sets
    Hu Yaxi
    Chentiejun
    2018 INTERNATIONAL CONFERENCE ON SMART GRID AND ELECTRICAL AUTOMATION (ICSGEA), 2018, : 199 - 205
  • [29] Dominance-Based Neighborhood Rough Sets and Its Attribute Reduction
    Chen, Hongmei
    Li, Tianrui
    Luo, Chuan
    Hu, Jie
    ROUGH SETS AND KNOWLEDGE TECHNOLOGY, RSKT 2015, 2015, 9436 : 89 - 99
  • [30] Hypergraph-based attribute reduction of formal contexts in rough sets
    Mao, Hua
    Wang, Shengyu
    Liu, Chang
    Wang, Gang
    EXPERT SYSTEMS WITH APPLICATIONS, 2023, 234