Feature fusion and optimization integrated refined deep residual network for diabetic retinopathy severity classification using fundus image

被引:5
作者
Dayana, A. Mary [1 ]
Emmanuel, W. R. Sam [1 ]
Linda, C. Harriet [2 ]
机构
[1] Manonmaniam Sundaranar Univ, Nesamony Mem Christian Coll, Dept Comp Sci, Tirunelveli 627012, Tamil Nadu, India
[2] Anna Univ, CSI Inst Technol, Dept Comp Sci & Engn, Chennai, Tamil Nadu, India
关键词
Diabetic retinopathy; Spatial attention U-Net; Fusion network; Refined deep residual network; Tunicate swarm spider monkey optimization; DIAGNOSIS; LEVEL;
D O I
10.1007/s00530-023-01078-x
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Diabetic retinopathy (DR) is a lasting diabetic condition that causes vision damage, and if left untreated, the progression of DR may result in permanent blindness. Therefore, it is obligatory to identify the pathological changes in the retina to detect the severity level of DR. Manual observation of retinal disorders makes the detection process more intricate, tedious, and error prone due to the prevalence of subtle pathologies in the retina. Deep learning-enabled optimization techniques have recently made promising progress in DR detection and classification tasks. Therefore, the current work suggests an enhanced classification approach based on metaheuristic optimization for severity grading in fundus images. Initially, a pre-processing step eradicates noise and enhances the image contrast. Following the optic disc segmentation using dilated convolution-based spatial attention U-Net, blood vessels are segmented using an entropy-based hybrid technique. Subsequently, the lesion area is segmented using the attention-based fusion U-Net model with a weighted focal loss. Then, features are extracted and fused using a two-layer fusion network. Based on the fused features, the DR stages are classified with refined deep residual network (RDRN) integrating a squeeze-excitation module and tunicate swarm spider monkey optimization (TSSMO) algorithm. The fundus images from the DIARETDB1 and DIARETDB0 datasets were used to evaluate the performance of the suggested method using different measures. The comparative performance reveals the efficacy of the developed method in classifying the DR severity stages.
引用
收藏
页码:1629 / 1650
页数:22
相关论文
共 52 条
  • [1] Optimizing connection weights in neural networks using the whale optimization algorithm
    Aljarah, Ibrahim
    Faris, Hossam
    Mirjalili, Seyedali
    [J]. SOFT COMPUTING, 2018, 22 (01) : 1 - 15
  • [2] MDA-Unet: A Multi-Scale Dilated Attention U-Net for Medical Image Segmentation
    Amer, Alyaa
    Lambrou, Tryphon
    Ye, Xujiong
    [J]. APPLIED SCIENCES-BASEL, 2022, 12 (07):
  • [3] [Anonymous], DIARETDB0 STANDARD D
  • [4] [Anonymous], DIARETDB1-Standard diabetic retinopathy database
  • [5] Spider Monkey Optimization algorithm for numerical optimization
    Bansal, Jagdish Chand
    Sharma, Harish
    Jadon, Shimpi Singh
    Clerc, Maurice
    [J]. MEMETIC COMPUTING, 2014, 6 (01) : 31 - 47
  • [6] Hierarchical severity grade classification of non-proliferative diabetic retinopathy
    Bhardwaj, Charu
    Jain, Shruti
    Sood, Meenakshi
    [J]. JOURNAL OF AMBIENT INTELLIGENCE AND HUMANIZED COMPUTING, 2021, 12 (02) : 2649 - 2670
  • [7] Composite deep neural network with gated-attention mechanism for diabetic retinopathy severity classification
    Bodapati, Jyostna Devi
    Shaik, Nagur Shareef
    Naralasetti, Veeranjaneyulu
    [J]. JOURNAL OF AMBIENT INTELLIGENCE AND HUMANIZED COMPUTING, 2021, 12 (10) : 9825 - 9839
  • [8] LOOP Descriptor: Local Optimal-Oriented Pattern
    Chakraborti, Tapabrata
    McCane, Brendan
    Mills, Steven
    Pal, Umapada
    [J]. IEEE SIGNAL PROCESSING LETTERS, 2018, 25 (05) : 635 - 639
  • [9] Sparse Regularization in Fuzzy c-Means for High-Dimensional Data Clustering
    Chang, Xiangyu
    Wang, Qingnan
    Liu, Yuewen
    Wang, Yu
    [J]. IEEE TRANSACTIONS ON CYBERNETICS, 2017, 47 (09) : 2616 - 2627
  • [10] Attention-Based Deep Fusion Network for Retinal Lesion Segmentation in Fundus Image
    Dayana, A. Mary
    Emmanuel, W. R. Sam
    [J]. ADVANCES IN COMPUTING AND DATA SCIENCES, PT I, 2021, 1440 : 401 - 409