Dosiomics and radiomics to predict pneumonitis after thoracic stereotactic body radiotherapy and immune checkpoint inhibition

被引:19
作者
Kraus, Kim Melanie [1 ,2 ,3 ,4 ]
Oreshko, Maksym [1 ,2 ,5 ]
Bernhardt, Denise [1 ,2 ,4 ]
Combs, Stephanie Elisabeth [1 ,2 ,3 ,4 ]
Peeken, Jan Caspar [1 ,2 ,3 ,4 ]
机构
[1] Tech Univ Munich TUM, Sch Med, Dept Radiat Oncol, Munich, Germany
[2] Tech Univ Munich TUM, Klinikum Rechts Isar, Munich, Germany
[3] Helmholtz Zentrum Munchen HMGU GmbH, Inst Radiat Med IRM, German Res Ctr Environm Hlth, Neuherberg, Germany
[4] German Consortium Translat Canc Res DKTK, Partner Site Munich, Munich, Germany
[5] Ludwig Maximilians Univ LMU Munich, Univ Hosp, Med Fac, Munich, Germany
关键词
pneumonitis; SBRT (stereotactic body radiation therapy); radiomics; dosiomics; immune checkpoint inhibition; model based prediction; lung cancer; CELL LUNG-CANCER; RADIATION PNEUMONITIS; ABLATIVE RADIOTHERAPY; THERAPY; CHEMORADIATION; TOXICITY;
D O I
10.3389/fonc.2023.1124592
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
IntroductionPneumonitis is a relevant side effect after radiotherapy (RT) and immunotherapy with checkpoint inhibitors (ICIs). Since the effect is radiation dose dependent, the risk increases for high fractional doses as applied for stereotactic body radiation therapy (SBRT) and might even be enhanced for the combination of SBRT with ICI therapy. Hence, patient individual pre-treatment prediction of post-treatment pneumonitis (PTP) might be able to support clinical decision making. Dosimetric factors, however, use limited information and, thus, cannot exploit the full potential of pneumonitis prediction. MethodsWe investigated dosiomics and radiomics model based approaches for PTP prediction after thoracic SBRT with and without ICI therapy. To overcome potential influences of different fractionation schemes, we converted physical doses to 2 Gy equivalent doses (EQD2) and compared both results. In total, four single feature models (dosiomics, radiomics, dosimetric, clinical factors) were tested and five combinations of those (dosimetric+clinical factors, dosiomics+radiomics, dosiomics+dosimetric+clinical factors, radiomics+dosimetric+clinical factors, radiomics+dosiomics+dosimetric+clinical factors). After feature extraction, a feature reduction was performed using pearson intercorrelation coefficient and the Boruta algorithm within 1000-fold bootstrapping runs. Four different machine learning models and the combination of those were trained and tested within 100 iterations of 5-fold nested cross validation. ResultsResults were analysed using the area under the receiver operating characteristic curve (AUC). We found the combination of dosiomics and radiomics features to outperform all other models with AUC(radiomics+dosiomics, D) = 0.79 (95% confidence interval 0.78-0.80) and AUC(radiomics+dosiomics, EQD2) = 0.77 (0.76-0.78) for physical dose and EQD2, respectively. ICI therapy did not impact the prediction result (AUC <= 0.5). Clinical and dosimetric features for the total lung did not improve the prediction outcome. ConclusionOur results suggest that combined dosiomics and radiomics analysis can improve PTP prediction in patients treated with lung SBRT. We conclude that pre-treatment prediction could support clinical decision making on an individual patient basis with or without ICI therapy.
引用
收藏
页数:9
相关论文
共 42 条
[11]   Machine learning algorithms for outcome prediction in (chemo)radiotherapy: An empirical comparison of classifiers [J].
Deist, Timo M. ;
Dankers, Frank J. W. M. ;
Valdes, Gilmer ;
Wijsman, Robin ;
Hsu, I-Chow ;
Oberije, Cary ;
Lustberg, Tim ;
van Soest, Johan ;
Hoebers, Frank ;
Jochems, Arthur ;
El Naqa, Issam ;
Wee, Leonard ;
Morin, Olivier ;
Raleigh, David R. ;
Bots, Wouter ;
Kaanders, Johannes H. ;
Belderbos, Jose ;
Kwint, Margriet ;
Solberg, Timothy ;
Monshouwer, Rene ;
Bussink, Johan ;
Dekker, Andre ;
Lambin, Philippe .
MEDICAL PHYSICS, 2018, 45 (07) :3449-3459
[12]   Non-Small Cell Lung Cancer, Version 3.2022 [J].
Ettinger, David S. ;
Wood, Douglas E. ;
Aisner, Dara L. ;
Akerley, Wallace ;
Bauman, Jessica R. ;
Bharat, Ankit ;
Bruno, Debora S. ;
Chang, Joe Y. ;
Chirieac, Lucian R. ;
D'Amico, Thomas A. ;
DeCamp, Malcolm ;
Dilling, Thomas J. ;
Dowell, Jonathan ;
Gettinger, Scott ;
Grotz, Travis E. ;
Gubens, Matthew A. ;
Hegde, Aparna ;
Lackner, Rudy P. ;
Lanuti, Michael ;
Lin, Jules ;
Loo, Billy W. ;
Lovly, Christine M. ;
Maldonado, Fabien ;
Massarelli, Erminia ;
Morgensztern, Daniel ;
Ng, Thomas ;
Otterson, Gregory A. ;
Pacheco, Jose M. ;
Patel, Sandip P. ;
Riely, Gregory J. ;
Riess, Jonathan ;
Schild, Steven E. ;
Shapiro, Theresa A. ;
Singh, Aditi P. ;
Stevenson, James ;
Tam, Alda ;
Tanvetyanon, Tawee ;
Yanagawa, Jane ;
Yang, Stephen C. ;
Yau, Edwin ;
Gregory, Kristina ;
Hughes, Miranda .
JOURNAL OF THE NATIONAL COMPREHENSIVE CANCER NETWORK, 2022, 20 (05) :497-530
[13]   Dose-volume histogram analysis as predictor of radiation pneumonitis in primary lung cancer patients treated with radiotherapy [J].
Fay, M ;
Tan, A ;
Fisher, R ;
Mac Manus, M ;
Wirth, A ;
Ball, D .
INTERNATIONAL JOURNAL OF RADIATION ONCOLOGY BIOLOGY PHYSICS, 2005, 61 (05) :1355-1363
[14]   Radiomic prediction of radiation pneumonitis on pretreatment planning computed tomography images prior to lung cancer stereotactic body radiation therapy [J].
Hirose, Taka-aki ;
Arimura, Hidetaka ;
Ninomiya, Kenta ;
Yoshitake, Tadamasa ;
Fukunaga, Jun-ichi ;
Shioyama, Yoshiyuki .
SCIENTIFIC REPORTS, 2020, 10 (01)
[15]   Dosimetric Factors and Radiomics Features Within Different Regions of Interest in Planning CT Images for Improving the Prediction of Radiation Pneumonitis [J].
Jiang, Wei ;
Song, Yipeng ;
Sun, Zhe ;
Qiu, Jianfeng ;
Shi, Liting .
INTERNATIONAL JOURNAL OF RADIATION ONCOLOGY BIOLOGY PHYSICS, 2021, 110 (04) :1161-1170
[16]   Prediction of radiation pneumonitis after definitive radiotherapy for locally advanced non-small cell lung cancer using multi-region radiomics analysis [J].
Kawahara, Daisuke ;
Imano, Nobuki ;
Nishioka, Riku ;
Ogawa, Kouta ;
Kimura, Tomoki ;
Nakashima, Taku ;
Iwamoto, Hiroshi ;
Fujitaka, Kazunori ;
Hattori, Noboru ;
Nagata, Yasushi .
SCIENTIFIC REPORTS, 2021, 11 (01)
[17]   Organs at Risk Considerations for Thoracic Stereotactic Body Radiation Therapy: What Is Safe for Lung Parenchyma? [J].
Kong, Feng-Ming ;
Moiseenko, Vitali ;
Zhao, Jing ;
Milano, Michael T. ;
Li, Ling ;
Rimner, Andreas ;
Das, Shiva ;
Li, X. Allen ;
Miften, Moyed ;
Liao, ZhongXing ;
Martel, Mary ;
Bentzen, Soren M. ;
Jackson, Andrew ;
Grimm, Jimm ;
Marks, Lawrence B. ;
Yorke, Ellen .
INTERNATIONAL JOURNAL OF RADIATION ONCOLOGY BIOLOGY PHYSICS, 2021, 110 (01) :172-187
[18]   The utility of quantitative CT radiomics features for improved prediction of radiation pneumonitis [J].
Krafft, Shane P. ;
Rao, Arvind ;
Stingo, Francesco ;
Briere, Tina Marie ;
Court, Laurence E. ;
Liao, Zhongxing ;
Martel, Mary K. .
MEDICAL PHYSICS, 2018, 45 (11) :5317-5324
[19]   Feature Selection with the Boruta Package [J].
Kursa, Miron B. ;
Rudnicki, Witold R. .
JOURNAL OF STATISTICAL SOFTWARE, 2010, 36 (11) :1-13
[20]   Deep Learning Based HPV Status Prediction for Oropharyngeal Cancer Patients [J].
Lang, Daniel M. ;
Peeken, Jan C. ;
Combs, Stephanie E. ;
Wilkens, Jan J. ;
Bartzsch, Stefan .
CANCERS, 2021, 13 (04) :1-11