Dosiomics and radiomics to predict pneumonitis after thoracic stereotactic body radiotherapy and immune checkpoint inhibition

被引:9
作者
Kraus, Kim Melanie [1 ,2 ,3 ,4 ]
Oreshko, Maksym [1 ,2 ,5 ]
Bernhardt, Denise [1 ,2 ,4 ]
Combs, Stephanie Elisabeth [1 ,2 ,3 ,4 ]
Peeken, Jan Caspar [1 ,2 ,3 ,4 ]
机构
[1] Tech Univ Munich TUM, Sch Med, Dept Radiat Oncol, Munich, Germany
[2] Tech Univ Munich TUM, Klinikum Rechts Isar, Munich, Germany
[3] Helmholtz Zentrum Munchen HMGU GmbH, Inst Radiat Med IRM, German Res Ctr Environm Hlth, Neuherberg, Germany
[4] German Consortium Translat Canc Res DKTK, Partner Site Munich, Munich, Germany
[5] Ludwig Maximilians Univ LMU Munich, Univ Hosp, Med Fac, Munich, Germany
来源
FRONTIERS IN ONCOLOGY | 2023年 / 13卷
关键词
pneumonitis; SBRT (stereotactic body radiation therapy); radiomics; dosiomics; immune checkpoint inhibition; model based prediction; lung cancer; CELL LUNG-CANCER; RADIATION PNEUMONITIS; ABLATIVE RADIOTHERAPY; THERAPY; CHEMORADIATION; TOXICITY;
D O I
10.3389/fonc.2023.1124592
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
IntroductionPneumonitis is a relevant side effect after radiotherapy (RT) and immunotherapy with checkpoint inhibitors (ICIs). Since the effect is radiation dose dependent, the risk increases for high fractional doses as applied for stereotactic body radiation therapy (SBRT) and might even be enhanced for the combination of SBRT with ICI therapy. Hence, patient individual pre-treatment prediction of post-treatment pneumonitis (PTP) might be able to support clinical decision making. Dosimetric factors, however, use limited information and, thus, cannot exploit the full potential of pneumonitis prediction. MethodsWe investigated dosiomics and radiomics model based approaches for PTP prediction after thoracic SBRT with and without ICI therapy. To overcome potential influences of different fractionation schemes, we converted physical doses to 2 Gy equivalent doses (EQD2) and compared both results. In total, four single feature models (dosiomics, radiomics, dosimetric, clinical factors) were tested and five combinations of those (dosimetric+clinical factors, dosiomics+radiomics, dosiomics+dosimetric+clinical factors, radiomics+dosimetric+clinical factors, radiomics+dosiomics+dosimetric+clinical factors). After feature extraction, a feature reduction was performed using pearson intercorrelation coefficient and the Boruta algorithm within 1000-fold bootstrapping runs. Four different machine learning models and the combination of those were trained and tested within 100 iterations of 5-fold nested cross validation. ResultsResults were analysed using the area under the receiver operating characteristic curve (AUC). We found the combination of dosiomics and radiomics features to outperform all other models with AUC(radiomics+dosiomics, D) = 0.79 (95% confidence interval 0.78-0.80) and AUC(radiomics+dosiomics, EQD2) = 0.77 (0.76-0.78) for physical dose and EQD2, respectively. ICI therapy did not impact the prediction result (AUC <= 0.5). Clinical and dosimetric features for the total lung did not improve the prediction outcome. ConclusionOur results suggest that combined dosiomics and radiomics analysis can improve PTP prediction in patients treated with lung SBRT. We conclude that pre-treatment prediction could support clinical decision making on an individual patient basis with or without ICI therapy.
引用
收藏
页数:9
相关论文
共 42 条
[1]   Multi-institutional dose-segmented dosiomic analysis for predicting radiation pneumonitis after lung stereotactic body radiation therapy [J].
Adachi, Takanori ;
Nakamura, Mitsuhiro ;
Shintani, Takashi ;
Mitsuyoshi, Takamasa ;
Kakino, Ryo ;
Ogata, Takashi ;
Ono, Tomohiro ;
Tanabe, Hiroaki ;
Kokubo, Masaki ;
Sakamoto, Takashi ;
Matsuo, Yukinori ;
Mizowaki, Takashi .
MEDICAL PHYSICS, 2021, 48 (04) :1781-1791
[2]  
[Anonymous], 3d slicer image computing platform
[3]  
[Anonymous], COMMON TERMINOLOGY C
[4]  
[Anonymous], Radiomics
[5]   Association of Radiation Therapy With Risk of Adverse Events in Patients Receiving Immunotherapy A Pooled Analysis of Trials in the US Food and Drug Administration Database [J].
Anscher, Mitchell S. ;
Arora, Shaily ;
Weinstock, Chana ;
Amatya, Anup ;
Bandaru, Pradeep ;
Tang, Chad ;
Girvin, Andrew T. ;
Fiero, Mallorie H. ;
Tang, Shenghui ;
Lubitz, Rachael ;
Amiri-Kordestani, Laleh ;
Theoret, Marc R. ;
Pazdur, Richard ;
Beaver, Julia A. .
JAMA ONCOLOGY, 2022, 8 (02) :232-240
[6]   Overall Survival with Durvalumab after Chemoradiotherapy in Stage III NSCLC [J].
Antonia, S. J. ;
Villegas, A. ;
Daniel, D. ;
Vicente, D. ;
Murakami, S. ;
Hui, R. ;
Kurata, T. ;
Chiappori, A. ;
Lee, K. H. ;
de Wit, M. ;
Cho, B. C. ;
Bourhaba, M. ;
Quantin, X. ;
Tokito, T. ;
Mekhail, T. ;
Planchard, D. ;
Kim, Y. -C. ;
Karapetis, C. S. ;
Hiret, S. ;
Ostoros, G. ;
Kubota, K. ;
Gray, J. E. ;
Paz-Ares, L. ;
Carpeno, J. de Castro ;
Faivre-Finn, C. ;
Reck, M. ;
Vansteenkiste, J. ;
Spigel, D. R. ;
Wadsworth, C. ;
Melillo, G. ;
Taboada, M. ;
Dennis, P. A. ;
Ozguroglu, M. .
NEW ENGLAND JOURNAL OF MEDICINE, 2018, 379 (24) :2342-2350
[7]   Radiomics analysis of 3D dose distributions to predict toxicity of radiotherapy for lung cancer [J].
Bourbonne, V. ;
Da-ano, R. ;
Jaouen, V. ;
Lucia, F. ;
Dissaux, G. ;
Bert, J. ;
Pradier, O. ;
Visvikis, D. ;
Hatt, M. ;
Schick, U. .
RADIOTHERAPY AND ONCOLOGY, 2021, 155 :144-150
[8]   Stereotactic ablative radiotherapy for operable stage I non-small-cell lung cancer (revised STARS): long-term results of a single-arm, prospective trial with prespecified comparison to surgery [J].
Chang, Joe Y. ;
Mehran, Reza J. ;
Feng, Lei ;
Verma, Vivek ;
Liao, Zhongxing ;
Welsh, James W. ;
Lin, Steven H. ;
O'Reilly, Michael S. ;
Jeter, Melenda D. ;
Balter, Peter A. ;
McRae, Stephen E. ;
Berry, Donald ;
Heymach, John, V ;
Roth, Jack A. .
LANCET ONCOLOGY, 2021, 22 (10) :1448-1457
[9]   Stereotactic ablative radiotherapy versus lobectomy for operable stage I non-small-cell lung cancer: a pooled analysis of two randomised trials [J].
Chang, Joe Y. ;
Senan, Suresh ;
Paul, Marinus A. ;
Mehran, Reza J. ;
Louie, Alexander V. ;
Balter, Peter ;
Groen, Harry J. M. ;
McRae, Stephen E. ;
Widder, Joachim ;
Feng, Lei ;
van den Borne, Ben E. E. M. ;
Munsell, Mark F. ;
Hurkmans, Coen ;
Berry, Donald A. ;
van Werkhoven, Erik ;
Kresl, John J. ;
Dingemans, Anne-Marie ;
Dawood, Omar ;
Haasbeek, Cornelis J. A. ;
Carpenter, Larry S. ;
De Jaeger, Katrien ;
Komaki, Ritsuko ;
Slotman, Ben J. ;
Smit, Egbert F. ;
Roth, Jack A. .
LANCET ONCOLOGY, 2015, 16 (06) :630-637
[10]   SMOTE: Synthetic minority over-sampling technique [J].
Chawla, Nitesh V. ;
Bowyer, Kevin W. ;
Hall, Lawrence O. ;
Kegelmeyer, W. Philip .
2002, American Association for Artificial Intelligence (16)