LDANet: Automatic lung parenchyma segmentation from CT images

被引:28
作者
Chen, Ying [1 ]
Feng, Longfeng [1 ]
Zheng, Cheng [1 ]
Zhou, Taohui [1 ]
Liu, Lan [2 ]
Liu, Pengfei [2 ]
Chen, Yi [3 ]
机构
[1] Nanchang Hangkong Univ, Sch Software, Nanchang 330063, Peoples R China
[2] Jiangxi Canc Hosp, Dept Med Imaging, Nanchang 330029, Peoples R China
[3] Wenzhou Univ, Key Lab Intelligent Informat Safety & Emergency Zh, Wenzhou 325035, Peoples R China
基金
中国国家自然科学基金;
关键词
LDB; DAGM; CT images; Lung parenchyma segmentation; CANCER; NETWORK;
D O I
10.1016/j.compbiomed.2023.106659
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
Automatic segmentation of the lung parenchyma from computed tomography (CT) images is helpful for the subsequent diagnosis and treatment of patients. In this paper, based on a deep learning algorithm, a lung dense attention network (LDANet) is proposed with two mechanisms: residual spatial attention (RSA) and gated channel attention (GCA). RSA is utilized to weight the spatial information of the lung parenchyma and suppress feature activation in irrelevant regions, while the weights of each channel are adaptively calibrated using GCA to implicitly predict potential key features. Then, a dual attention guidance module (DAGM) is designed to maximize the integration of the advantages of both mechanisms. In addition, LDANet introduces a lightweight dense block (LDB) that reuses feature information and a positioned transpose block (PTB) that realizes accurate positioning and gradually restores the image resolution until the predicted segmentation map is generated. Experiments are conducted on two public datasets, LIDC-IDRI and COVID-19 CT Segmentation, on which LDANet achieves Dice similarity coefficient values of 0.98430 and 0.98319, respectively, outperforming a state-of-the-art lung segmentation model. Additionally, the effectiveness of the main components of LDANet is demonstrated through ablation experiments.
引用
收藏
页数:9
相关论文
共 53 条
  • [1] Reduced Lung-Cancer Mortality with Low-Dose Computed Tomographic Screening
    Aberle, Denise R.
    Adams, Amanda M.
    Berg, Christine D.
    Black, William C.
    Clapp, Jonathan D.
    Fagerstrom, Richard M.
    Gareen, Ilana F.
    Gatsonis, Constantine
    Marcus, Pamela M.
    Sicks, JoRean D.
    [J]. NEW ENGLAND JOURNAL OF MEDICINE, 2011, 365 (05) : 395 - 409
  • [2] 2D Statistical Lung Shape Analysis Using Chest Radiographs: Modelling and Segmentation
    Afzali, Ali
    Babapour Mofrad, Farshid
    Pouladian, Majid
    [J]. JOURNAL OF DIGITAL IMAGING, 2021, 34 (03) : 523 - 540
  • [3] Automatic lung segmentation in low-dose chest CT scans using convolutional deep and wide network (CDWN)
    Agnes, S. Akila
    Anitha, J.
    Peter, J. Dinesh
    [J]. NEURAL COMPUTING & APPLICATIONS, 2020, 32 (20) : 15845 - 15855
  • [4] Correlation of Chest CT and RT-PCR Testing for Coronavirus Disease 2019 (COVID-19) in China: A Report of 1014 Cases
    Ai, Tao
    Yang, Zhenlu
    Hou, Hongyan
    Zhan, Chenao
    Chen, Chong
    Lv, Wenzhi
    Tao, Qian
    Sun, Ziyong
    Xia, Liming
    [J]. RADIOLOGY, 2020, 296 (02) : E32 - E40
  • [5] [Anonymous], COVID-19 CT Segmentation Dataset
  • [6] [Anonymous], 2015, CVPR
  • [7] [Anonymous], CORONAVIRUS COVID 19
  • [8] The Lung Image Database Consortium, (LIDC) and Image Database Resource Initiative (IDRI): A Completed Reference Database of Lung Nodules on CT Scans
    Armato, Samuel G., III
    McLennan, Geoffrey
    Bidaut, Luc
    McNitt-Gray, Michael F.
    Meyer, Charles R.
    Reeves, Anthony P.
    Zhao, Binsheng
    Aberle, Denise R.
    Henschke, Claudia I.
    Hoffman, Eric A.
    Kazerooni, Ella A.
    MacMahon, Heber
    van Beek, Edwin J. R.
    Yankelevitz, David
    Biancardi, Alberto M.
    Bland, Peyton H.
    Brown, Matthew S.
    Engelmann, Roger M.
    Laderach, Gary E.
    Max, Daniel
    Pais, Richard C.
    Qing, David P-Y
    Roberts, Rachael Y.
    Smith, Amanda R.
    Starkey, Adam
    Batra, Poonam
    Caligiuri, Philip
    Farooqi, Ali
    Gladish, Gregory W.
    Jude, C. Matilda
    Munden, Reginald F.
    Petkovska, Iva
    Quint, Leslie E.
    Schwartz, Lawrence H.
    Sundaram, Baskaran
    Dodd, Lori E.
    Fenimore, Charles
    Gur, David
    Petrick, Nicholas
    Freymann, John
    Kirby, Justin
    Hughes, Brian
    Casteele, Alessi Vande
    Gupte, Sangeeta
    Sallam, Maha
    Heath, Michael D.
    Kuhn, Michael H.
    Dharaiya, Ekta
    Burns, Richard
    Fryd, David S.
    [J]. MEDICAL PHYSICS, 2011, 38 (02) : 915 - 931
  • [9] SCA-CNN: Spatial and Channel-wise Attention in Convolutional Networks for Image Captioning
    Chen, Long
    Zhang, Hanwang
    Xiao, Jun
    Nie, Liqiang
    Shao, Jian
    Liu, Wei
    Chua, Tat-Seng
    [J]. 30TH IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2017), 2017, : 6298 - 6306
  • [10] Accurate iris segmentation and recognition using an end-to-end unified framework based on MADNet and DSANet
    Chen, Ying
    Gan, Huimin
    Chen, Huiling
    Zeng, Yugang
    Xu, Liang
    Heidari, Ali Asghar
    Zhu, Xiaodong
    Liu, Yuanning
    [J]. NEUROCOMPUTING, 2023, 517 : 264 - 278