Viral vectors and extracellular vesicles: innate delivery systems utilized in CRISPR/Cas-mediated cancer therapy

被引:51
作者
Ahmadi, Seyed Esmaeil [1 ]
Soleymani, Maral [2 ]
Shahriyary, Fahimeh [1 ]
Amirzargar, Mohammad Reza [1 ]
Ofoghi, Mahya [3 ,4 ]
Fattahi, Mohammad Davood [5 ]
Safa, Majid [1 ]
机构
[1] Iran Univ Med Sci, Fac Allied Med, Dept Hematol & Blood Banking, Tehran, Iran
[2] Ahvaz Jundishapur Univ Med Sci, Sch Med, Ahvaz, Iran
[3] Tehran Hosp Petr Ind, Div Clin Lab, Tehran, Iran
[4] Shahid Beheshti Univ Med Sci, Sch Med, Dept Immunol, Tehran, Iran
[5] Shahid Beheshti Univ Med Sci, Sch Med, Dept Clin Biochem, Tehran, Iran
关键词
IN-VIVO DELIVERY; RNA-GUIDED ENDONUCLEASE; HEPATITIS-B-VIRUS; NUCLEIC-ACID DETECTION; GENE-TRANSFER; CLINICAL-APPLICATIONS; MOUSE MODEL; KNOCK-IN; DNA; CRISPR-CAS9;
D O I
10.1038/s41417-023-00597-z
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Gene editing-based therapeutic strategies grant the power to override cell machinery and alter faulty genes contributing to disease development like cancer. Nowadays, the principal tool for gene editing is the clustered regularly interspaced short palindromic repeats-associated nuclease 9 (CRISPR/Cas9) system. In order to bring this gene-editing system from the bench to the bedside, a significant hurdle remains, and that is the delivery of CRISPR/Cas to various target cells in vivo and in vitro. The CRISPR-Cas system can be delivered into mammalian cells using various strategies; among all, we have reviewed recent research around two natural gene delivery systems that have been proven to be compatible with human cells. Herein, we have discussed the advantages and limitations of viral vectors, and extracellular vesicles (EVs) in delivering the CRISPR/Cas system for cancer therapy purposes.
引用
收藏
页码:936 / 954
页数:19
相关论文
共 179 条
[61]   NUCLEOTIDE-SEQUENCE OF THE IAP GENE, RESPONSIBLE FOR ALKALINE-PHOSPHATASE ISOZYME CONVERSION IN ESCHERICHIA-COLI, AND IDENTIFICATION OF THE GENE-PRODUCT [J].
ISHINO, Y ;
SHINAGAWA, H ;
MAKINO, K ;
AMEMURA, M ;
NAKATA, A .
JOURNAL OF BACTERIOLOGY, 1987, 169 (12) :5429-5433
[62]   COVID-19 Vaccines: Adenoviral Vectors [J].
Jacob-Dolan, Catherine ;
Barouch, Dan H. .
ANNUAL REVIEW OF MEDICINE, 2022, 73 :41-54
[63]   RNA-programmed genome editing in human cells [J].
Jinek, Martin ;
East, Alexandra ;
Cheng, Aaron ;
Lin, Steven ;
Ma, Enbo ;
Doudna, Jennifer .
ELIFE, 2013, 2
[64]   A Programmable Dual-RNA-Guided DNA Endonuclease in Adaptive Bacterial Immunity [J].
Jinek, Martin ;
Chylinski, Krzysztof ;
Fonfara, Ines ;
Hauer, Michael ;
Doudna, Jennifer A. ;
Charpentier, Emmanuelle .
SCIENCE, 2012, 337 (6096) :816-821
[65]   Integrase-defective Lentiviral Vectors as a Delivery Platform for Targeted Modification of Adenosine Deaminase Locus [J].
Joglekar, Alok V. ;
Hollis, Roger P. ;
Kuftinec, Gabriela ;
Senadheera, Shantha ;
Chan, Rebecca ;
Kohn, Donald B. .
MOLECULAR THERAPY, 2013, 21 (09) :1705-1717
[66]   RNA in Defense: CRISPRs Protect Prokaryotes against Mobile Genetic Elements [J].
Jore, Matthijs M. ;
Brouns, Stan J. J. ;
van der Oost, John .
COLD SPRING HARBOR PERSPECTIVES IN BIOLOGY, 2012, 4 (06) :1-12
[67]   Epstein-Barr virus strain variation and cancer [J].
Kanda, Teru ;
Yajima, Misako ;
Ikuta, Kazufumi .
CANCER SCIENCE, 2019, 110 (04) :1132-1139
[68]   CRISPR-Cas9 DNA Base-Editing and Prime-Editing [J].
Kantor, Ariel ;
McClements, Michelle E. ;
MacLaren, Robert E. .
INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2020, 21 (17) :1-22
[69]   SHERLOCK: nucleic acid detection with CRISPR nucleases [J].
Kellner, Max J. ;
Koob, Jeremy G. ;
Gootenberg, Jonathan S. ;
Abudayyeh, Omar O. ;
Zhang, Feng .
NATURE PROTOCOLS, 2019, 14 (10) :2986-3012
[70]   Inactivation of the Human Papillomavirus E6 or E7 Gene in Cervical Carcinoma Cells by Using a Bacterial CRISPR/Cas RNA-Guided Endonuclease [J].
Kennedy, Edward M. ;
Kornepati, Anand V. R. ;
Goldstein, Michael ;
Bogerd, Hal P. ;
Poling, Brigid C. ;
Whisnant, Adam W. ;
Kastan, Michael B. ;
Cullen, Bryan R. .
JOURNAL OF VIROLOGY, 2014, 88 (20) :11965-11972