Multiobjective Distributed Array Beamforming in the Near Field Using Wireless Syntonization

被引:7
作者
Bhattacharyya, Ahona [1 ]
Merlo, Jason M. M. [1 ]
Mghabghab, Serge R. R. [1 ,2 ]
Schlegel, Anton [1 ]
Nanzer, Jeffrey A. A. [1 ]
机构
[1] Michigan State Univ, Dept Elect & Comp Engn, E Lansing, MI 48824 USA
[2] MathWorks, Natick, MA 01760 USA
来源
IEEE MICROWAVE AND WIRELESS TECHNOLOGY LETTERS | 2023年 / 33卷 / 06期
基金
美国国家科学基金会;
关键词
Array signal processing; Wireless communication; Transmitting antennas; Receiving antennas; Wireless sensor networks; Phased arrays; Microwave antenna arrays; Distributed beamforming; distributed phased arrays; multiobjective beamforming; near-field beamforming; wireless frequency syntonization; SENSOR;
D O I
10.1109/LMWT.2022.3231183
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
We demonstrate the efficacy of distributed microwave multiobjective beamforming at ranges near field to the array using an optimization algorithm and wireless frequency alignment (syntonization). While considerable research has recently been devoted to distributed phased array coordination, the ability to steer signals to locations close to the array in open-loop (feedback-free) systems has not been demonstrated. In this work, we apply a traditional far-field beamforming algorithm to a set of distributed antennas that are wirelessly syntonized. We demonstrate multiobjective beamforming at 0.9 GHz using software-defined radios (SDRs) in a distributed array steering either two beams (focii) or one beam and one null. This work demonstrates the feasibility of a critical part of future distributed beamforming systems that, when combined with other coordination technologies, will support coherent beamforming in widely distributed wireless systems.
引用
收藏
页码:775 / 778
页数:4
相关论文
共 23 条
[1]  
Ariyarathna Viduneth, 2015, 2015 IEEE MTT-S International Microwave Symposium (IMS2015), P1, DOI 10.1109/MWSYM.2015.7167112
[2]  
Bhattacharyya Ahona, 2022, 2022 IEEE International Symposium on Antennas and Propagation and USNC-URSI Radio Science Meeting (AP-S/URSI), P1974, DOI 10.1109/AP-S/USNC-URSI47032.2022.9886103
[3]   Time-Slotted Round-Trip Carrier Synchronization for Distributed Beamforming [J].
Brown, D. Richard, III ;
Poor, H. Vincent .
IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2008, 56 (11) :5630-5643
[4]   HIGH-RESOLUTION FREQUENCY-WAVENUMBER SPECTRUM ANALYSIS [J].
CAPON, J .
PROCEEDINGS OF THE IEEE, 1969, 57 (08) :1408-&
[5]   Multi-Node Open-Loop Distributed Beamforming Based on Scalable, High-Accuracy Ranging [J].
Ellison, Sean M. ;
Mghabghab, Serge R. ;
Nanzer, Jeffrey A. .
IEEE SENSORS JOURNAL, 2022, 22 (02) :1629-1637
[6]   ALGORITHM FOR LINEARLY CONSTRAINED ADAPTIVE ARRAY PROCESSING [J].
FROST, OL .
PROCEEDINGS OF THE INSTITUTE OF ELECTRICAL AND ELECTRONICS ENGINEERS, 1972, 60 (08) :926-&
[7]  
Habets Emanuel A. P., 2009, 2009 IEEE Workshop on Applications of Signal Processing to Audio and Acoustics (WASPAA), P141, DOI 10.1109/ASPAA.2009.5346463
[8]   A Cooperative Wireless Sensor Network for Indoor Industrial Monitoring [J].
Iqbal, Zafar ;
Kim, Kiseon ;
Lee, Heung-No .
IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, 2017, 13 (02) :482-491
[9]   Stress monitoring using a distributed wireless intelligent sensor system [J].
Jovanov, E ;
Lords, AO ;
Raskovic, D ;
Cox, PG ;
Adhami, R ;
Andrasik, F .
IEEE ENGINEERING IN MEDICINE AND BIOLOGY MAGAZINE, 2003, 22 (03) :49-55
[10]   Remote sensing and control of an irrigation system using a distributed wireless sensor network [J].
Kim, Yunseop ;
Evans, Robert G. ;
Iversen, William M. .
IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2008, 57 (07) :1379-1387