The diameter and eccentricity eigenvalues of graphs

被引:1
|
作者
Chen, Yunzhe [1 ]
Wang, Jianfeng [1 ]
Wang, Jing [2 ]
机构
[1] Shandong Univ Technol, Sch Math & Stat, Zibo 255049, Peoples R China
[2] Hebei Normal Univ Sci & Technol, Sch Math & Informat Sci & Technol, Qinhuangdao 066004, Peoples R China
基金
中国国家自然科学基金;
关键词
Eccentricity matrix; diameter; interlacing theorem; eigenvalue; MATRIX; SPECTRA;
D O I
10.1142/S1793830922501828
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The eccentricity matrix epsilon(G) = (epsilon(uv)) of a graph G is constructed from the distance matrix by keeping each row and each column only the largest distances with epsilon(uv) = {d(u, v), if d(u, v) = min{epsilon(u), epsilon(v)}, 0, otherwise, where d(u, v) is the distance between two vertices u and v, and epsilon(u) = max{d(u, v) vertical bar v is an element of V (G)} is the eccentricity of the vertex u. The epsilon-eigenvalues of G are those of its eccentricity matrix. In this paper, employing the well-known Cauchy Interlacing Theorem we give the following lower bounds for the second, the third and the fourth largest E-eigenvalues by means of the diameter d of G: xi(2)(G) >= {-1, if d <= 2; alpha d, if d >= 3, xi(3)(G) >=-d, and xi(4)(G) >= -1-root 5/2 d, where alpha = 0.3111+ is the second largest root of x(3) - x(2) - 3x + 1 = 0. Moreover, we further discuss the graphs achieving the above lower bounds.
引用
收藏
页数:17
相关论文
共 50 条
  • [41] Discrepancy and eigenvalues of Cayley graphs
    Yoshiharu Kohayakawa
    Vojtěch Rödl
    Mathias Schacht
    Czechoslovak Mathematical Journal, 2016, 66 : 941 - 954
  • [42] Computing the Eccentricity Distribution of Large Graphs
    Takes, Frank W.
    Kosters, Walter A.
    ALGORITHMS, 2013, 6 (01) : 100 - 118
  • [43] Spectral determinations and eccentricity matrix of graphs
    Wang, Jianfeng
    Lu, Mei
    Brunetti, Maurizio
    Lu, Lu
    Huang, Xueyi
    ADVANCES IN APPLIED MATHEMATICS, 2022, 139
  • [44] Eigenvalues and energy in threshold graphs
    Jacobs, David P.
    Trevisan, Vilmar
    Tura, Fernando
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2015, 465 : 412 - 425
  • [45] On distance Laplacian and distance signless Laplacian eigenvalues of graphs
    Das, Kinkar Ch.
    Aouchiche, Mustapha
    Hansen, Pierre
    LINEAR & MULTILINEAR ALGEBRA, 2019, 67 (11): : 2307 - 2324
  • [46] Discrepancy and eigenvalues of Cayley graphs
    Kohayakawa, Yoshiharu
    Rodl, Vojtch
    Schacht, Mathias
    CZECHOSLOVAK MATHEMATICAL JOURNAL, 2016, 66 (03) : 941 - 954
  • [47] A Note on Eigenvalues and Asymmetric Graphs
    Lotfi, Abdullah
    Mowshowitz, Abbe
    Dehmer, Matthias
    AXIOMS, 2023, 12 (06)
  • [48] Eigenvalues and toughness of regular graphs
    Chen, Yuanyuan
    Lin, Huiqiu
    Wang, Zhiwen
    DISCRETE MATHEMATICS, 2025, 348 (05)
  • [49] Walks and eigenvalues of signed graphs
    Stanic, Zoran
    SPECIAL MATRICES, 2023, 11 (01):
  • [50] A note on eigenvalues of signed graphs
    Sun, Gaoxing
    Liu, Feng
    Lan, Kaiyang
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2022, 652 : 125 - 131