The diameter and eccentricity eigenvalues of graphs

被引:1
|
作者
Chen, Yunzhe [1 ]
Wang, Jianfeng [1 ]
Wang, Jing [2 ]
机构
[1] Shandong Univ Technol, Sch Math & Stat, Zibo 255049, Peoples R China
[2] Hebei Normal Univ Sci & Technol, Sch Math & Informat Sci & Technol, Qinhuangdao 066004, Peoples R China
基金
中国国家自然科学基金;
关键词
Eccentricity matrix; diameter; interlacing theorem; eigenvalue; MATRIX; SPECTRA;
D O I
10.1142/S1793830922501828
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The eccentricity matrix epsilon(G) = (epsilon(uv)) of a graph G is constructed from the distance matrix by keeping each row and each column only the largest distances with epsilon(uv) = {d(u, v), if d(u, v) = min{epsilon(u), epsilon(v)}, 0, otherwise, where d(u, v) is the distance between two vertices u and v, and epsilon(u) = max{d(u, v) vertical bar v is an element of V (G)} is the eccentricity of the vertex u. The epsilon-eigenvalues of G are those of its eccentricity matrix. In this paper, employing the well-known Cauchy Interlacing Theorem we give the following lower bounds for the second, the third and the fourth largest E-eigenvalues by means of the diameter d of G: xi(2)(G) >= {-1, if d <= 2; alpha d, if d >= 3, xi(3)(G) >=-d, and xi(4)(G) >= -1-root 5/2 d, where alpha = 0.3111+ is the second largest root of x(3) - x(2) - 3x + 1 = 0. Moreover, we further discuss the graphs achieving the above lower bounds.
引用
收藏
页数:17
相关论文
共 50 条
  • [31] On the Eccentricity Matrices of Certain Bi-Block Graphs
    Divyadevi, T.
    Jeyaraman, I.
    BULLETIN OF THE MALAYSIAN MATHEMATICAL SCIENCES SOCIETY, 2024, 47 (03)
  • [32] Upper bounds on the (signless) Laplacian eigenvalues of graphs
    Das, Kinkar Ch.
    Liu, Muhuo
    Shan, Haiying
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2014, 459 : 334 - 341
  • [33] Computational analysis of diameter eccentricity based and hyper diameter eccentricity based indices for linear saturated monocarboxylic acids
    Sarkarai, D.
    Desikan, K.
    JOURNAL OF THE NATIONAL SCIENCE FOUNDATION OF SRI LANKA, 2024, 52 (03): : 311 - 320
  • [34] On the eigenvalues of certain Cayley graphs and arrangement graphs
    Chen, Bai Fan
    Ghorbani, Ebrahim
    Wong, Kok Bin
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2014, 444 : 246 - 253
  • [35] Solutions for two conjectures on the eigenvalues of the eccentricity matrix, and beyond
    Wei, Wei
    He, Xiaocong
    Li, Shuchao
    DISCRETE MATHEMATICS, 2020, 343 (08)
  • [36] Eigenvalues, Laplacian Eigenvalues, and Some Hamiltonian Properties of Graphs
    Li, Rao
    UTILITAS MATHEMATICA, 2012, 88 : 247 - 257
  • [37] Oriented diameter of graphs with diameter 3
    Kwok, Peter K.
    Liu, Qi
    West, Douglas B.
    JOURNAL OF COMBINATORIAL THEORY SERIES B, 2010, 100 (03) : 265 - 274
  • [38] Eccentricity matrix of corona of two graphs
    Pandey, Smrati
    Selvaganesh, Lavanya
    Pervin, Jesmina
    DISCRETE APPLIED MATHEMATICS, 2024, 359 : 354 - 363
  • [39] Eccentricity spectral radius of t-clique trees with given diameter
    Qiu, Zhengping
    Tang, Zikai
    Li, Qiyue
    DISCRETE APPLIED MATHEMATICS, 2023, 337 : 202 - 217
  • [40] ON THE GENERALIZED DISTANCE EIGENVALUES OF GRAPHS
    Alhevaz, A.
    Baghipur, M.
    Ganie, H. A.
    Das, K. C.
    MATEMATICKI VESNIK, 2024, 76 (1-2): : 29 - 42