The diameter and eccentricity eigenvalues of graphs

被引:1
|
作者
Chen, Yunzhe [1 ]
Wang, Jianfeng [1 ]
Wang, Jing [2 ]
机构
[1] Shandong Univ Technol, Sch Math & Stat, Zibo 255049, Peoples R China
[2] Hebei Normal Univ Sci & Technol, Sch Math & Informat Sci & Technol, Qinhuangdao 066004, Peoples R China
基金
中国国家自然科学基金;
关键词
Eccentricity matrix; diameter; interlacing theorem; eigenvalue; MATRIX; SPECTRA;
D O I
10.1142/S1793830922501828
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The eccentricity matrix epsilon(G) = (epsilon(uv)) of a graph G is constructed from the distance matrix by keeping each row and each column only the largest distances with epsilon(uv) = {d(u, v), if d(u, v) = min{epsilon(u), epsilon(v)}, 0, otherwise, where d(u, v) is the distance between two vertices u and v, and epsilon(u) = max{d(u, v) vertical bar v is an element of V (G)} is the eccentricity of the vertex u. The epsilon-eigenvalues of G are those of its eccentricity matrix. In this paper, employing the well-known Cauchy Interlacing Theorem we give the following lower bounds for the second, the third and the fourth largest E-eigenvalues by means of the diameter d of G: xi(2)(G) >= {-1, if d <= 2; alpha d, if d >= 3, xi(3)(G) >=-d, and xi(4)(G) >= -1-root 5/2 d, where alpha = 0.3111+ is the second largest root of x(3) - x(2) - 3x + 1 = 0. Moreover, we further discuss the graphs achieving the above lower bounds.
引用
收藏
页数:17
相关论文
共 50 条
  • [11] On the eccentricity inertia indices of chain graphs
    Huang, Jing
    Zhang, Minjie
    APPLIED MATHEMATICS AND COMPUTATION, 2025, 493
  • [12] On the eccentricity spectra of complete multipartite graphs
    Wei, Wei
    Li, Shuchao
    APPLIED MATHEMATICS AND COMPUTATION, 2022, 424
  • [13] On the harmonic index and the average eccentricity of graphs
    Zhong, Lingping
    Cui, Qing
    UTILITAS MATHEMATICA, 2017, 103 : 311 - 318
  • [14] Spectral properties of the eccentricity matrix of graphs
    Wang, Jianfeng
    Lu, Mei
    Lu, Lu
    Belardo, Francesco
    DISCRETE APPLIED MATHEMATICS, 2020, 279 : 168 - 177
  • [15] Eccentricity energy change of complete multipartite graphs due to edge deletion
    Mahato, Iswar
    Kannan, M. Rajesh
    SPECIAL MATRICES, 2022, 10 (01): : 193 - 202
  • [16] Energy and inertia of the eccentricity matrix of coalescence of graphs
    Patel, Ajay Kumar
    Selvaganesh, Lavanya
    Pandey, Sanjay Kumar
    DISCRETE MATHEMATICS, 2021, 344 (12)
  • [17] On the eigenvalues and Seidel eigenvalues of chain graphs
    Xiong, Zhuang
    Hou, Yaoping
    DISCRETE APPLIED MATHEMATICS, 2024, 351 : 44 - 53
  • [18] Graphs with three distinct distance eigenvalues
    Zhang, Yuke
    Lin, Huiqiu
    APPLIED MATHEMATICS AND COMPUTATION, 2023, 445
  • [19] MINIMUM NUMBER OF DISTINCT EIGENVALUES OF GRAPHS
    Ahmadi, Bahman
    Alinaghipour, Fatemeh
    Cavers, Michael S.
    Fallat, Shaun
    Meagher, Karen
    Nasserasr, Shahla
    ELECTRONIC JOURNAL OF LINEAR ALGEBRA, 2013, 26 : 673 - 691
  • [20] On the normalized distance laplacian eigenvalues of graphs
    Ganie, Hilal A.
    Rather, Bilal Ahmad
    Das, Kinkar Chandra
    APPLIED MATHEMATICS AND COMPUTATION, 2023, 438