Effect of Annealing Temperature on Minimum Domain Size of Ferroelectric Hafnia

被引:2
作者
Yun, Seokjung [1 ]
Kim, Hoon [1 ]
Seo, Myungsoo [2 ]
Kang, Min-Ho [3 ]
Kim, Taeho [2 ]
Cho, Seongwoo [1 ]
Park, Min Hyuk [4 ]
Jeon, Sanghun [2 ]
Choi, Yang-Kyu [2 ]
Hong, Seungbum [1 ,5 ]
机构
[1] Korea Adv Inst Sci & Technol, Dept Mat Sci & Engn, Daejeon 34141, South Korea
[2] Korea Adv Inst Sci & Technol, Sch Elect Engn, Daejeon 34141, South Korea
[3] Korea Adv Inst Sci & Technol, Natl Nano Fab Ctr, Daejeon 34141, South Korea
[4] Seoul Natl Univ, Dept Mat Sci & Engn, Seoul 08826, South Korea
[5] KAIST Inst NanoCentury KINC, Daejeon 34141, South Korea
基金
新加坡国家研究基金会;
关键词
ferroelectric hafnia; domain behavior; piezoresponseforce microscopy; rapid thermal annealing; multiscaleanalysis; grain size; domain size; THIN-FILMS; OXIDE; POLARIZATION; NANOSCALE;
D O I
10.1021/acsaelm.3c01104
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
We optimized the annealing temperature of the Hf0.5Zr0.5O2/TiN thin-film heterostructure via a multiscale analysis of the remnant polarization, crystallographic phase, minimum ferroelectric domain size, and average grain size. The remnant polarization and minimum domain size were closely related to the relative orthorhombic and monoclinic phase contents. The minimum domain size and optimum remnant polarization and capacitance were obtained by thermal annealing of Hf0.5Zr0.5O2/TiN/Si at 500 and 600 C-degrees, respectively. The results suggest that the minimum domain size is more important than the sheer magnitude of the remnant polarization because of the retention and fatigue of switchable polarization in ferroelectric nanodevices. This study can contribute to the development of ultralow-power logic transistors and next-generation nonvolatile memory devices.
引用
收藏
页码:2134 / 2141
页数:8
相关论文
共 52 条
  • [1] Ferroelectricity at the nanoscale: Local polarization in oxide thin films and heterostructures
    Ahn, CH
    Rabe, KM
    Triscone, JM
    [J]. SCIENCE, 2004, 303 (5657) : 488 - 491
  • [2] Preface: Science of ferroelectric thin films and application to devices
    Baik, Sunggi
    Setter, Nava
    Auciello, Orlando
    [J]. JOURNAL OF APPLIED PHYSICS, 2006, 100 (05)
  • [3] Differentiating Ferroelectric and Nonferroelectric Electromechanical Effects with Scanning Probe Microscopy
    Balke, Nina
    Maksymovych, Petro
    Jesse, Stephen
    Herklotz, Andreas
    Tselev, Alexander
    Eom, Chang-Beom
    Kravchenko, Ivan I.
    Yu, Pu
    Kalinin, Sergei V.
    [J]. ACS NANO, 2015, 9 (06) : 6484 - 6492
  • [4] Böscke TS, 2011, 2011 IEEE INTERNATIONAL ELECTRON DEVICES MEETING (IEDM)
  • [5] Ferroelectricity in hafnium oxide thin films
    Boescke, T. S.
    Mueller, J.
    Braeuhaus, D.
    Schroeder, U.
    Boettger, U.
    [J]. APPLIED PHYSICS LETTERS, 2011, 99 (10)
  • [6] Reversible transition between the polar and antipolar phases and its implications for wake-up and fatigue in HfO2-based ferroelectric thin film
    Cheng, Yan
    Gao, Zhaomeng
    Ye, Kun Hee
    Park, Hyeon Woo
    Zheng, Yonghui
    Zheng, Yunzhe
    Gao, Jianfeng
    Park, Min Hyuk
    Choi, Jung-Hae
    Xue, Kan-Hao
    Hwang, Cheol Seong
    Lyu, Hangbing
    [J]. NATURE COMMUNICATIONS, 2022, 13 (01)
  • [7] Enhancement of Local Piezoresponse in Polymer Ferroelectrics via Nanoscale Control of Microstructure
    Choi, Yoon-Young
    Sharma, Pankaj
    Phatak, Charudatta
    Gosztola, David J.
    Liu, Yunya
    Lee, Joonseok
    Lee, Byeongdu
    Li, Jiangyu
    Gruverman, Alexei
    Ducharme, Stephen
    Hong, Seungbum
    [J]. ACS NANO, 2015, 9 (02) : 1809 - 1819
  • [8] Collins L., 2020, ARXIV
  • [9] Enhancing piezoelectricity through polarization-strain coupling in ferroelectric superlattices
    Cooper, Valentino R.
    Rabe, Karin M.
    [J]. PHYSICAL REVIEW B, 2009, 79 (18):
  • [10] Domains and ferroelectricity
    Fridkin, V. M.
    [J]. CRYSTALLOGRAPHY REPORTS, 2017, 62 (02) : 169 - 173