Molecular Connectors Boosting the Performance of MoS2 Cathodes in Zinc-Ion Batteries

被引:7
|
作者
Guo, Haipeng [1 ]
Montes-Garcia, Veronica [1 ]
Peng, Haijun [1 ]
Samori, Paolo [1 ]
Ciesielski, Artur [1 ]
机构
[1] Univ Strasbourg, CNRS, ISIS, 8 Allee Gaspard Monge, F-67000 Strasbourg, France
关键词
electrochemical reaction mechanism; molecular strategy; MoS2; zinc ion batteries; STORAGE; NANOSHEETS;
D O I
10.1002/smll.202310338
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Zinc-ion batteries (ZIBs) are promising energy storage systems due to high energy density, low-cost, and abundant availability of zinc as a raw material. However, the greatest challenge in ZIBs research is lack of suitable cathode materials that can reversibly intercalate Zn2+ ions. 2D layered materials, especially MoS2-based, attract tremendous interest due to large surface area and ability to intercalate/deintercalate ions. Unfortunately, pristine MoS2 obtained by traditional protocols such as chemical exfoliation or hydrothermal/solvothermal methods exhibits limited electronic conductivity and poor chemical stability upon charge/discharge cycling. Here, a novel molecular strategy to boost the electrochemical performance of MoS2 cathode materials for aqueous ZIBs is reported. The use of dithiolated conjugated molecular pillars, that is, 4,4 '-biphenyldithiols, enables to heal defects and crosslink the MoS2 nanosheets, yielding covalently bridged networks (MoS2-SH2) with improved ionic and electronic conductivity and electrochemical performance. In particular, MoS2-SH2 electrodes display high specific capacity of 271.3 mAh g(-1) at 0.1 A g(-1), high energy density of 279 Wh kg(-1), and high power density of 12.3 kW kg(-1). With its outstanding rate capability (capacity of 148.1 mAh g(-1) at 10 A g(-1)) and stability (capacity of 179 mAh g(-1) after 1000 cycles), MoS2-SH2 electrodes outperform other MoS2-based electrodes in ZIBs.
引用
收藏
页数:9
相关论文
共 50 条
  • [41] Defect engineering on VO2(B) nanoleaves/graphene oxide for the high performance of cathodes of zinc-ion batteries with a wide temperature range
    Yuan, Ziyan
    Xiao, Fuyu
    Fang, Yixing
    Xiong, Peixun
    Sun, Xiaoli
    Duan, Xuehui
    Yang, Xuhui
    Fan, Haosen
    Wei, Mingdeng
    Qian, Qingrong
    Chen, Qinghua
    Zeng, Lingxing
    JOURNAL OF POWER SOURCES, 2023, 559
  • [42] An overview of aqueous zinc-ion batteries based on conversion-type cathodes
    Kang, Junming
    Zhao, Zedong
    Li, Huajing
    Meng, Yuhuan
    Hu, Bo
    Lu, Hongbin
    ENERGY MATERIALS, 2022, 2 (02):
  • [43] The origin of the enhanced performance of nitrogen-doped MoS2 in lithium ion batteries
    Liu, Qiuhong
    Xia Weijun
    Wu, Zhenjun
    Huo, Jia
    Liu, Dongdong
    Wang, Qiang
    Wang, Shuangyin
    NANOTECHNOLOGY, 2016, 27 (17)
  • [44] Enhanced Electrochemical Performance of MoS2 for Lithium Ion Batteries by Simple Chemical Lithiation
    Li, Dan
    Zhang, Chaofeng
    Du, Guodong
    Zeng, Rong
    Wang, Shiquan
    Guo, Zaiping
    Chen, Zhixin
    Liu, Huakun
    JOURNAL OF THE CHINESE CHEMICAL SOCIETY, 2012, 59 (10) : 1196 - 1200
  • [45] Boosting the Electrochemical Performance of V2O3 by Anchoring on Carbon Nanotube Microspheres with Macrovoids for Ultrafast and Long-Life Aqueous Zinc-Ion Batteries
    Park, Jin-Sung
    Yang, Sungjin
    Kang, Yun Chan
    SMALL METHODS, 2021, 5 (09):
  • [46] A Comprehensive Review of the Mechanism and Modification Strategies of V2O5 Cathodes for Aqueous Zinc-Ion Batteries
    Guo, Anqi
    Wang, Zhenghao
    Chen, Liang
    Liu, Weizao
    Zhang, Kailong
    Cao, Liping
    Liang, Bin
    Luo, Dongmei
    ACS NANO, 2024, 18 (40) : 27261 - 27286
  • [47] Boosting tough metal Zn anode by MOF layer for high-performance zinc-ion batteries
    Zhang, Weiwei
    Qi, Weitong
    Yang, Kai
    Hu, Yuanyuan
    Jiang, Fuyi
    Liu, Wenbao
    Du, Lingyu
    Yan, Zhenhua
    Sun, Jianchao
    ENERGY STORAGE MATERIALS, 2024, 71
  • [48] Crystalline and amorphous MnO2 cathodes with open framework enable high-performance aqueous zinc-ion batteries
    Huang, Chunfu
    Wu, Cong
    Zhang, Zilu
    Xie, Yunyun
    Li, Yang
    Yang, Caihong
    Wang, Hai
    FRONTIERS OF MATERIALS SCIENCE, 2021, 15 (02) : 202 - 215
  • [49] Hollow MoS2/rGO composites as high-performance anode materials for lithium-ion batteries
    Xue, Haoliang
    Jiao, Qingze
    Du, Jinyu
    Wang, Shanshan
    Feng, Caihong
    Wu, Qin
    Li, Hansheng
    Lu, Qinliang
    Shi, Daxin
    Zhao, Yun
    IONICS, 2019, 25 (10) : 4659 - 4666
  • [50] Polyethylene glycol intercalation for MoS2 enables fast zinc-ion storage via pseudocapacitance
    Shaolong Xu
    Xinchao Lu
    Qiqi Mo
    Yiju Lv
    Bin Huang
    Zheng Liu
    Pintian Zou
    Shuai Xu
    Ionics, 2024, 30 : 2229 - 2241