The Prilling and Cocoating Collaborative Strategy to Construct High Performance of Regeneration LiFePO4 Materials

被引:9
作者
Li, Xiangnan [1 ,2 ,3 ,4 ]
Wang, Mingyang [1 ,2 ,3 ,4 ]
Zhou, Qibin [1 ,2 ,3 ]
Ge, Ming [1 ,2 ,3 ]
Zhang, Mengdan [1 ,2 ,3 ]
Liu, Wenfeng [1 ,2 ,3 ]
Shi, Zhenpu [1 ,2 ,3 ]
Yue, Hongyun [1 ,2 ,3 ]
Zhang, Huishuang [1 ,2 ,3 ]
Yin, Yanhong [1 ,2 ,3 ]
Yang, Shu-Ting [1 ,2 ,3 ]
机构
[1] Henan Normal Univ, Sch Phys, Sch Chem & Chem Engn, Xinxiang 453007, Henan, Peoples R China
[2] Natl & Local Joint Engn Lab Mot Power & Key Mat, Xinxiang 453007, Henan, Peoples R China
[3] Collaborat Innovat Ctr Henan Prov Mot Power & Key, Xinxiang 453007, Henan, Peoples R China
[4] Henan Prov Power Battery Innovat Ctr Co Ltd, Xinxiang 453000, Henan, Peoples R China
来源
ACS MATERIALS LETTERS | 2024年 / 6卷 / 02期
关键词
LITHIUM; BATTERIES; IRON; RECOVERY;
D O I
10.1021/acsmaterialslett.3c01161
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
There have been a massive amount of spent LiFePO4 batteries produced in recent years because LiFePO4 is widely used in energy storage and electric vehicles, which need to be recycled urgently. However, considering the manufacturing cost of LiFePO4, traditional metallurgical technology is not economical to recover spent LiFePO4. Moreover, the performance of directly regenerated materials is inferior to that of commercial materials. It hinders the development of recycled cathode materials for lithium-ion batteries. Herein, spent LiFePO4 with severely degraded is regenerated by preoxidation and prilling combine cocoating strategy. The preoxidation fully decomposed the binder and residual carbon. The subsequent regeneration process synthesized spherical LiFePO4 with carbon and Li3PO4 cocoating layer, whose electrochemical performance is comparable to commercial LiFePO4. This method dramatically improves the rate and low temperature electrochemical performance of the regenerated LiFePO4, which provides a new scheme for the reuse of recycled LFP in lithium-ion batteries.
引用
收藏
页码:640 / 647
页数:8
相关论文
共 50 条
[1]   Preoxidation and Prilling Combined with Doping Strategy to Build High-Performance Recycling Spent LiFePO4 Materials [J].
Li, Xiangnan ;
Tang, Xinyu ;
Ge, Ming ;
Zhou, Qibin ;
Zhang, Xiaoyuan ;
Liu, Wenfeng ;
Zhang, Huishuang ;
Xie, Haijiao ;
Yin, Yanhong ;
Yang, Shuting .
LANGMUIR, 2024, 40 (18) :9556-9562
[2]   Recycling and crystal regeneration of commercial used LiFePO4 cathode materials [J].
Liang, Qian ;
Yue, Haifeng ;
Wang, Shaofeng ;
Yang, Shunyi ;
Lam, Kwok-ho ;
Hou, Xianhua .
ELECTROCHIMICA ACTA, 2020, 330
[3]   Direct regeneration of waste LiFePO4 cathode materials with a solid-phase method promoted by activated CNTs [J].
Song, Li ;
Qi, Cai ;
Wang, Shuhan ;
Zhu, Xukun ;
Zhang, Tong ;
Jin, Yachao ;
Zhang, Mingdao .
WASTE MANAGEMENT, 2023, 157 :141-148
[4]   An environmentally friendly and facile approach to recycle spent LiFePO4 for resynthesizing LiFePO4/C materials [J].
Wang, Haiyu ;
Qiu, Xiangyun ;
Feng, Zhenhua ;
Li, Xinyu ;
Wei, Tao .
JOURNAL OF MATERIAL CYCLES AND WASTE MANAGEMENT, 2025, 27 (04) :2618-2627
[5]   Regeneration and performance of LiFePO4 with Li2CO3 and FePO4 as raw materials recovered from spent LiFePO4 batteries [J].
Chen, Biaobing ;
Liu, Min ;
Cao, Shuang ;
Chen, Gairong ;
Guo, Xiaowei ;
Wang, Xianyou .
MATERIALS CHEMISTRY AND PHYSICS, 2022, 279
[6]   Regeneration of spent LiFePO4 cathode materials using solid state method and electrochemical performance [J].
Chen Y. ;
Li H. ;
Song W. ;
Feng Z. .
Huagong Xuebao/CIESC Journal, 2018, 69 (12) :5316-5325
[7]   Direct relithiation and efficient regeneration of spent LiFePO4 materials through thermochemical healing [J].
Zhu, Yuanyi ;
Jiao, Xiaojuan ;
Bian, Haidong ;
Lu, Xiao-Ying ;
Zhang, Zheming .
IONICS, 2023, 29 (11) :4569-4576
[8]   Storage performance of LiFePO4 nanoplates [J].
Saravanan, Kuppan ;
Reddy, M. V. ;
Balaya, Palani ;
Gong, Hao ;
Chowdari, B. V. R. ;
Vittal, Jagadese J. .
JOURNAL OF MATERIALS CHEMISTRY, 2009, 19 (05) :605-610
[9]   For elements-utilization regeneration of spent LiFePO4: Designed basic precursors for advanced polycrystal electrode materials [J].
Lei, Shuya ;
Zhao, Wenqing ;
Li, Jiexiang ;
Song, Shaole ;
Sun, Wei ;
Ge, Peng ;
Yang, Yue .
ENERGY STORAGE MATERIALS, 2025, 74
[10]   The Effect of LiFePO4 Particle Size and Surface Area on the Performance of LiFePO4/Graphite Cells [J].
Logan, E. R. ;
Eldesoky, A. ;
Liu, Y. ;
Lei, Min ;
Yang, Xinhe ;
Hebecker, H. ;
Luscombe, A. ;
Johnson, Michel B. ;
Dahn, J. R. .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2022, 169 (05)