Synergistic effect of biochar and plant growth promoting bacteria improve the growth and phytostabilization potential of Sorghum bicolor in Cd and Zn contaminated soils

被引:5
|
作者
Anbuganesan, Vadivel [1 ]
Vishnupradeep, Ramasamy [1 ]
Mehnaz, Ninu [1 ]
Kumar, Adarsh [2 ]
Freitas, Helena [3 ]
Rajkumar, Mani [1 ]
机构
[1] Bharathiar Univ, Dept Environm Sci, Coimbatore 641046, India
[2] Gandhi Inst Technol & Management, GITAM Sch Sci, Dept Environm Studies, Visakhapatnam 530045, Andhra Prades, India
[3] Univ Coimbra, Ctr Funct Ecol Sci People & Planet, Dept Life Sci, P-3000456 Coimbra, Portugal
来源
RHIZOSPHERE | 2024年 / 29卷
关键词
Phytostabilization; Heavy metal; Biochar; Plant growth promoting bacteria; Soil enzymes; HEAVY-METALS; CO-INOCULATION; CADMIUM UPTAKE; PHYTOREMEDIATION; ACCUMULATION; AMENDMENT; RESPONSES; KINETICS; SYSTEMS; STRESS;
D O I
10.1016/j.rhisph.2023.100844
中图分类号
S3 [农学(农艺学)];
学科分类号
0901 ;
摘要
The synergetic effect of biochar (BC) and plant growth promoting bacteria (PGPB) on phytoremediation potential of plants in heavy metal (HM) contaminated soils was not well understood. A pot experiment was carried out to evaluate the effects of banana pith derived BC (0, 2.5 and 5%, w/w) as soil amendment together with inoculation of PGPB Bacillus thuringiensis SE1C2 on the growth, physiological response and phytoremediation potential of Sorghum bicolor (L.) Moench in Cd and Zn contaminated soils. Combined treatment of BC 5% and SE1C2 increased plant shoot length, root length, fresh weight and dry weight but decreased Cd and Zn accumulation as compared to other treatments. The BC 5% treatment also increased SE1C2 colonization in rhizosphere soils and tissue interior of S. bicolor even under HM stress. In addition, the plants treated with BC 5% and SE1C2 also had increased chlorophyll, carotenoid and antioxidant enzymes while lower leaf malondialdehyde and proline contents which suggest their potential in improving HM stress tolerance in plants. Similarly, the combined BC 5% and SE1C2 treatment considerably improved enzymatic activities (acid phosphatases, alkaline phosphatases, beta-glucosidase and urease) in HM contaminated soils. Thus, this study concludes that the combined treatment of Bacillus thuringiensis SE1C2 and banana pith BC could be exploited as an effective strategy for improving the plant growth and phytostabilization potential in HM contaminated soils.
引用
收藏
页数:10
相关论文
共 50 条
  • [31] Salt-tolerant and plant growth-promoting bacteria isolated from Zn/Cd contaminated soil: identification and effect on rice under saline conditions
    Nakbanpote, Woranan
    Panitlurtumpai, Natthawoot
    Sangdee, Aphidech
    Sakulpone, Narongrit
    Sirisom, Pawinee
    Pimthong, Apinya
    JOURNAL OF PLANT INTERACTIONS, 2014, 9 (01) : 379 - 387
  • [32] Characterization of Potential Oil Degrading and Plant Growth Promoting Bacteria from the Soils of Himachal Pradesh
    Kumar, Ajay
    Sharma, Mamta
    Kumar, Amit
    JOURNAL OF PURE AND APPLIED MICROBIOLOGY, 2013, 7 (03): : 2287 - 2294
  • [33] PLANT GROwTH-PROMOTING BACTERIA BELONGING TO THE GENERA PSEUDOMONAS AND BAcillUS IMPROVE THE GROwTH OF SORGHUM SEEDINGS IN A LOw-NUTRIENT SOIL
    Amora-Lazcano, Enriqueta
    Quiroz-Gonzalez, Hector J.
    Osornio-Ortega, Cristofer, I
    Cruz-Maya, Juan A.
    Jan-Roblero, Janet
    BOTANICAL SCIENCES, 2022, 100 (01) : 56 - 66
  • [34] Plant-growth-promoting rhizobacteria to improve crop growth in saline soils: a review
    Paul, Diby
    Lade, Harshad
    AGRONOMY FOR SUSTAINABLE DEVELOPMENT, 2014, 34 (04) : 737 - 752
  • [35] Plant-growth-promoting rhizobacteria to improve crop growth in saline soils: a review
    Diby Paul
    Harshad Lade
    Agronomy for Sustainable Development, 2014, 34 : 737 - 752
  • [36] Enhancing the phytoextraction efficiency of heavy metals in acidic and alkaline soils by Sedum alfredii Hance: A study on the synergistic effect of plant growth regulator and plant growth-promoting bacteria
    Chen, Zhiqin
    Liu, Qizhen
    Chen, Dan
    Wu, Yingjie
    Hamid, Yasir
    Lin, Qiang
    Zhang, Shijun
    Feng, Ying
    He, Zhenli
    Yin, Xianyuan
    Yang, Xiaoe
    SCIENCE OF THE TOTAL ENVIRONMENT, 2024, 932
  • [37] The application of plant growth regulators to improve phytoremediation of contaminated soils: A review
    Rostami, Saeid
    Azhdarpoor, Abooalfazl
    CHEMOSPHERE, 2019, 220 : 818 - 827
  • [38] Plant growth-promoting bacteria improve Triticum aestivum L. growth and photosynthetic activity in sulfonamide-contaminated soil
    Saleem, Ammara
    Zulfiqar, Asma
    Alamoudi, Soha A.
    Ashkan, Mada F.
    Alhomaidi, Eman
    TURKISH JOURNAL OF AGRICULTURE AND FORESTRY, 2022, 46 (06) : 822 - 837
  • [39] Biochar-based metal tolerating plant growth promoting bacterial inoculants enhanced the ability of ryegrass for phytostabilization
    Liu, Wenjing
    Xiao, Xian
    Li, Liangzhong
    Shen, Xiaoxia
    Cao, Yue
    Gao, Chenxin
    Zhao, Yuan
    ENVIRONMENTAL RESEARCH, 2025, 265
  • [40] Erratum to: Role of plant growth promoting rhizobacteria in the remediation of metal contaminated soils
    Mohammad Saghir Khan
    Almas Zaidi
    Parvaze Ahmad Wani
    Mohammad Oves
    Environmental Chemistry Letters, 2012, 10 : 105 - 106