Synergistic effect of biochar and plant growth promoting bacteria improve the growth and phytostabilization potential of Sorghum bicolor in Cd and Zn contaminated soils

被引:5
|
作者
Anbuganesan, Vadivel [1 ]
Vishnupradeep, Ramasamy [1 ]
Mehnaz, Ninu [1 ]
Kumar, Adarsh [2 ]
Freitas, Helena [3 ]
Rajkumar, Mani [1 ]
机构
[1] Bharathiar Univ, Dept Environm Sci, Coimbatore 641046, India
[2] Gandhi Inst Technol & Management, GITAM Sch Sci, Dept Environm Studies, Visakhapatnam 530045, Andhra Prades, India
[3] Univ Coimbra, Ctr Funct Ecol Sci People & Planet, Dept Life Sci, P-3000456 Coimbra, Portugal
来源
RHIZOSPHERE | 2024年 / 29卷
关键词
Phytostabilization; Heavy metal; Biochar; Plant growth promoting bacteria; Soil enzymes; HEAVY-METALS; CO-INOCULATION; CADMIUM UPTAKE; PHYTOREMEDIATION; ACCUMULATION; AMENDMENT; RESPONSES; KINETICS; SYSTEMS; STRESS;
D O I
10.1016/j.rhisph.2023.100844
中图分类号
S3 [农学(农艺学)];
学科分类号
0901 ;
摘要
The synergetic effect of biochar (BC) and plant growth promoting bacteria (PGPB) on phytoremediation potential of plants in heavy metal (HM) contaminated soils was not well understood. A pot experiment was carried out to evaluate the effects of banana pith derived BC (0, 2.5 and 5%, w/w) as soil amendment together with inoculation of PGPB Bacillus thuringiensis SE1C2 on the growth, physiological response and phytoremediation potential of Sorghum bicolor (L.) Moench in Cd and Zn contaminated soils. Combined treatment of BC 5% and SE1C2 increased plant shoot length, root length, fresh weight and dry weight but decreased Cd and Zn accumulation as compared to other treatments. The BC 5% treatment also increased SE1C2 colonization in rhizosphere soils and tissue interior of S. bicolor even under HM stress. In addition, the plants treated with BC 5% and SE1C2 also had increased chlorophyll, carotenoid and antioxidant enzymes while lower leaf malondialdehyde and proline contents which suggest their potential in improving HM stress tolerance in plants. Similarly, the combined BC 5% and SE1C2 treatment considerably improved enzymatic activities (acid phosphatases, alkaline phosphatases, beta-glucosidase and urease) in HM contaminated soils. Thus, this study concludes that the combined treatment of Bacillus thuringiensis SE1C2 and banana pith BC could be exploited as an effective strategy for improving the plant growth and phytostabilization potential in HM contaminated soils.
引用
收藏
页数:10
相关论文
共 50 条
  • [1] Plant growth-promoting bacteria isolated from earthworms enhance spinach growth and its phytoremediation potential in metal-contaminated soils
    Houida, Sofia
    Yakkou, Lamia
    Kaya, Leyla Okyay
    Bilen, Serdar
    Raouane, Mohamed
    El Harti, Abdellatif
    Amghar, Souad
    INTERNATIONAL MICROBIOLOGY, 2024, 27 (02) : 545 - 558
  • [2] EFFECT OF HEAVY METAL AND EDTA APPLICATION ON PLANT GROWTH AND PHYTO-EXTRACTION POTENTIAL OF SORGHUM (SORGHUM BICOLOR)
    Bacaha, Nafees
    Shamas, Rabia
    Bakht, Jehan
    Rafi, Abdur
    Farhatullah
    Gillani, Afsheena
    PAKISTAN JOURNAL OF BOTANY, 2015, 47 (05) : 1679 - 1684
  • [3] Phytostabilization of moderate copper contaminated soils using co-inoculation of Vicia faba with plant growth promoting bacteria
    Fatnassi, Imen Challougui
    Chiboub, Manel
    Saadani, Omar
    Jebara, Moez
    Jebara, Salwa Harzalli
    JOURNAL OF BASIC MICROBIOLOGY, 2015, 55 (03) : 303 - 311
  • [4] Plant growth promoting bacteria improve growth and phytostabilization potential of Zea mays under chromium and drought stress by altering photosynthetic and antioxidant responses
    Vishnupradeep, R.
    Bruno, L. Benedict
    Taj, Zarin
    Karthik, Chinnannan
    Challabathula, Dinakar
    Tripti
    Kumar, Adarsh
    Freitas, Helena
    Rajkumar, Mani
    ENVIRONMENTAL TECHNOLOGY & INNOVATION, 2022, 25
  • [5] Effects of plant growth-promoting bacteria on EDTA-assisted phytostabilization of heavy metals in a contaminated calcareous soil
    Hamidpour, Mohsen
    Nemati, Hamideh
    Dahaji, Payman Abbaszadeh
    Roosta, Hamid Reza
    ENVIRONMENTAL GEOCHEMISTRY AND HEALTH, 2020, 42 (08) : 2535 - 2545
  • [6] Plant growth-promoting bacteria modulate gene expression and induce antioxidant tolerance to alleviate synergistic toxicity from combined microplastic and Cd pollution in sorghum
    Liu, Yong-Qi
    Chen, Yan
    Ren, Xue-Min
    Li, Yu-Ying
    Zhang, Ying-Jun
    Zhang, Hao
    Han, Hui
    Chen, Zhao -Jin
    ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY, 2023, 264
  • [7] Phytomanagement of Cd-contaminated soils using maize (Zea mays L.) assisted by plant growth-promoting rhizobacteria
    Moreira, Helena
    Marques, Ana P. G. C.
    Franco, Albina R.
    Rangel, Antonio O. S. S.
    Castro, Paula M. L.
    ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH, 2014, 21 (16) : 9742 - 9753
  • [8] Biochar as a carrier for plant growth-promoting bacteria in phytoremediation of pesticides
    Kamyab, Hesam
    Chelliapan, Shreeshivadasan
    Khalili, Elham
    Rezania, Shahabaldin
    Balasubramanian, Balamuralikrishnan
    Taheri, Mohammad Mahdi
    Simancas-Racines, Daniel
    Rajendran, Saravanan
    Yusuf, Mohammad
    JOURNAL OF HAZARDOUS MATERIALS ADVANCES, 2025, 18
  • [9] Effects of plant growth-promoting bacteria on EDTA-assisted phytostabilization of heavy metals in a contaminated calcareous soil
    Mohsen Hamidpour
    Hamideh Nemati
    Payman Abbaszadeh Dahaji
    Hamid Reza Roosta
    Environmental Geochemistry and Health, 2020, 42 : 2535 - 2545
  • [10] Plant growth-promoting bacteria isolated from earthworms enhance spinach growth and its phytoremediation potential in metal-contaminated soils
    Sofia Houida
    Lamia Yakkou
    Leyla Okyay Kaya
    Serdar Bilen
    Mohamed Raouane
    Abdellatif El Harti
    Souad Amghar
    International Microbiology, 2024, 27 : 545 - 558