Lightweight Techniques to Improve Generalization and Robustness of U-Net Based Networks for Pulmonary Lobe Segmentation

被引:3
作者
Dadras, Armin A. [1 ]
Jaziri, Achref [2 ]
Frodl, Eric [3 ]
Vogl, Thomas J. [3 ]
Dietz, Julia [3 ,4 ]
Bucher, Andreas M. [3 ]
机构
[1] Med Univ Vienna, Dept Otorhinolaryngol, Div Phoniatr Logoped, Wahringer Gurtel 18-20, A-1090 Vienna, Austria
[2] Goethe Univ Frankfurt, Ctr Cognit & Computat, Robert Meyer Str 10-12, D-60323 Frankfurt, Germany
[3] Goethe Univ Frankfurt, Univ Hosp, Inst Diagnost & Intervent Radiol, Theodor Stern Kai 7, D-60590 Frankfurt, Germany
[4] Goethe Univ Frankfurt, Univ Hosp, Dept Med, Med Clin 1, Theodor Stern Kai 7, D-60590 Frankfurt, Germany
来源
BIOENGINEERING-BASEL | 2024年 / 11卷 / 01期
关键词
artificial intelligence; lung thorax; CT; segmentation; deep learning; computer vision; self-supervised learning; attention;
D O I
10.3390/bioengineering11010021
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Lung lobe segmentation in chest CT is relevant to a wide range of clinical applications. However, existing segmentation pipelines often exhibit vulnerabilities and performance degradations when applied to external datasets. This is usually attributed to the size of the available dataset or model. We show that it is possible to enhance generalizability without huge resources by carefully curating the dataset and combining machine learning with medical expertise. Multiple machine learning techniques (self-supervision (SSL), attention (A), and data augmentation (DA)) are used to train a fast and fully-automated lung lobe segmentation model based on 2D U-Net. Our study involved evaluating these techniques on a diverse dataset collected under the RACOON project, encompassing 100 CT chest scans from patients with bacterial, viral, or SARS-CoV2 infections. We compare our model to a baseline U-Net trained on the same dataset. Our approach significantly improved segmentation accuracy (Dice score of 92.8% vs. 82.3%, p < 0.001). Moreover, our model achieved state-of-the-art performance (Dice score of 92.8% vs. 90.8% for the literature's state-of-the-art, p = 0.102) with reduced training examples (69 vs. 231 CT Scans). Among the techniques, data augmentation with expert knowledge displayed the most significant impact, enhancing the Dice score by +0.056. Notably, these enhancements are not limited to lobe segmentation but can be seamlessly integrated into various medical imaging segmentation tasks, demonstrating their versatility and potential for broader applications.
引用
收藏
页数:13
相关论文
共 34 条
[1]   The Lung Image Database Consortium, (LIDC) and Image Database Resource Initiative (IDRI): A Completed Reference Database of Lung Nodules on CT Scans [J].
Armato, Samuel G., III ;
McLennan, Geoffrey ;
Bidaut, Luc ;
McNitt-Gray, Michael F. ;
Meyer, Charles R. ;
Reeves, Anthony P. ;
Zhao, Binsheng ;
Aberle, Denise R. ;
Henschke, Claudia I. ;
Hoffman, Eric A. ;
Kazerooni, Ella A. ;
MacMahon, Heber ;
van Beek, Edwin J. R. ;
Yankelevitz, David ;
Biancardi, Alberto M. ;
Bland, Peyton H. ;
Brown, Matthew S. ;
Engelmann, Roger M. ;
Laderach, Gary E. ;
Max, Daniel ;
Pais, Richard C. ;
Qing, David P-Y ;
Roberts, Rachael Y. ;
Smith, Amanda R. ;
Starkey, Adam ;
Batra, Poonam ;
Caligiuri, Philip ;
Farooqi, Ali ;
Gladish, Gregory W. ;
Jude, C. Matilda ;
Munden, Reginald F. ;
Petkovska, Iva ;
Quint, Leslie E. ;
Schwartz, Lawrence H. ;
Sundaram, Baskaran ;
Dodd, Lori E. ;
Fenimore, Charles ;
Gur, David ;
Petrick, Nicholas ;
Freymann, John ;
Kirby, Justin ;
Hughes, Brian ;
Casteele, Alessi Vande ;
Gupte, Sangeeta ;
Sallam, Maha ;
Heath, Michael D. ;
Kuhn, Michael H. ;
Dharaiya, Ekta ;
Burns, Richard ;
Fryd, David S. .
MEDICAL PHYSICS, 2011, 38 (02) :915-931
[2]   Albumentations: Fast and Flexible Image Augmentations [J].
Buslaev, Alexander ;
Iglovikov, Vladimir I. ;
Khvedchenya, Eugene ;
Parinov, Alex ;
Druzhinin, Mikhail ;
Kalinin, Alexandr A. .
INFORMATION, 2020, 11 (02)
[3]  
Cardoso MJ, 2017, Deep learning in medical image analysis and multimodal learning for clinical decision support
[4]  
Castro Eduardo, 2018, 2018 IEEE EMBS International Conference on Biomedical & Health Informatics (BHI), P230, DOI 10.1109/BHI.2018.8333411
[5]  
Ferreira FT, 2018, IEEE IJCNN
[6]  
Gerard SE, 2019, I S BIOMED IMAGING, P1207, DOI [10.1109/isbi.2019.8759212, 10.1109/ISBI.2019.8759212]
[7]  
Glorot X., 2010, Understanding the difficulty of training deep feedforward neural networks
[8]   Fleischner Society:: Glossary of terms tor thoracic imaging [J].
Hansell, David M. ;
Bankier, Alexander A. ;
MacMahon, Heber ;
McLoud, Theresa C. ;
Mueller, Nestor L. ;
Remy, Jacques .
RADIOLOGY, 2008, 246 (03) :697-722
[9]  
Harrison Adam P., 2017, Medical Image Computing and Computer Assisted Intervention MICCAI 2017. 20th International Conference. Proceedings: LNCS 10435, P621, DOI 10.1007/978-3-319-66179-7_71
[10]  
Hendrycks D, 2019, Arxiv, DOI [arXiv:1906.12340, 10.48550/arXiv.1906.12340,arXiv]