Sideband injection locking in microresonator frequency combs

被引:14
作者
Wildi, Thibault [1 ]
Ulanov, Alexander [1 ]
Englebert, Nicolas [2 ]
Voumard, Thibault [1 ]
Herr, Tobias [1 ,3 ]
机构
[1] Deutsch Elektronen Synchrotron DESY, Notkestr 85, D-22607 Hamburg, Germany
[2] Univ Libre Bruxelles ULB, OPERA Photon, 50 Ave FD Roosevelt,CP 194-5, B-1050 Brussels, Belgium
[3] Univ Hamburg UHH, Phys Dept, Luruper Chaussee 149, D-22761 Hamburg, Germany
基金
欧洲研究理事会; 欧盟地平线“2020”;
关键词
TEMPORAL SOLITONS; GENERATION; DRIVEN;
D O I
10.1063/5.0170224
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Frequency combs from continuous-wave-driven Kerr-nonlinear microresonators have evolved into a key photonic technology with applications from optical communication to precision spectroscopy. Essential to many of these applications is the control of the comb's defining parameters, i.e., carrier-envelope offset frequency and repetition rate. An elegant and all-optical approach to controlling both degrees of freedom is the suitable injection of a secondary continuous-wave laser into the resonator onto which one of the comb lines locks. Here, we experimentally study such sideband injection locking in microresonator soliton combs across a wide optical bandwidth and derive analytic scaling laws for the locking range and repetition rate control. As an application example, we demonstrate optical frequency division and repetition rate phase-noise reduction to three orders of magnitude below the noise of a free-running system. The presented results can guide the design of sideband injection-locked, parametrically generated frequency combs with opportunities for low-noise microwave generation, compact optical clocks with simplified locking schemes, and, more generally, all-optically stabilized frequency combs from Kerr-nonlinear resonators.(c) 2023 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
引用
收藏
页数:7
相关论文
共 58 条
[1]   A STUDY OF LOCKING PHENOMENA IN OSCILLATORS [J].
ADLER, R .
PROCEEDINGS OF THE INSTITUTE OF RADIO ENGINEERS, 1946, 34 (06) :351-357
[2]   Photonic chip-based resonant supercontinuum via pulse-driven Kerr microresonator solitons [J].
Anderson, Miles H. ;
Bouchand, Romain ;
Liu, Junqiu ;
Weng, Wenle ;
Ewelina Obrzud ;
Herr, Tobias ;
Kippenberg, Tobias J. .
OPTICA, 2021, 8 (06) :771-779
[3]   Nonlinear filtering of an optical pulse train using dissipative Kerr solitons [J].
Brasch, Victor ;
Obrzud, Ewelina ;
Lecomte, Steve ;
Herr, Tobias .
OPTICA, 2019, 6 (11) :1386-1393
[4]   Optical frequency comb generation from a monolithic microresonator [J].
Del'Haye, P. ;
Schliesser, A. ;
Arcizet, O. ;
Wilken, T. ;
Holzwarth, R. ;
Kippenberg, T. J. .
NATURE, 2007, 450 (7173) :1214-1217
[5]   Frequency comb assisted diode laser spectroscopy for measurement of microcavity dispersion [J].
Del'Haye, P. ;
Arcizet, O. ;
Gorodetsky, M. L. ;
Holzwarth, R. ;
Kippenberg, T. J. .
NATURE PHOTONICS, 2009, 3 (09) :529-533
[6]   Self-Injection Locking and Phase-Locked States in Microresonator-Based Optical Frequency Combs [J].
Del'Haye, Pascal ;
Beha, Katja ;
Papp, Scott B. ;
Diddams, Scott A. .
PHYSICAL REVIEW LETTERS, 2014, 112 (04)
[7]   Optical frequency combs: Coherently uniting the electromagnetic spectrum [J].
Diddams, Scott A. ;
Vahala, Kerry ;
Udem, Thomas .
SCIENCE, 2020, 369 (6501) :267-+
[8]  
Englebert N., 2023, CLEO 2023, pSW3G.3
[9]   Phase and intensity control of dissipative Kerr cavity solitons [J].
Erkintalo, Miro ;
Murdoch, Stuart G. ;
Coen, Stephane .
JOURNAL OF THE ROYAL SOCIETY OF NEW ZEALAND, 2022, 52 (02) :149-167
[10]   Parallel convolutional processing using an integrated photonic tensor core [J].
Feldmann, J. ;
Youngblood, N. ;
Karpov, M. ;
Gehring, H. ;
Li, X. ;
Stappers, M. ;
Le Gallo, M. ;
Fu, X. ;
Lukashchuk, A. ;
Raja, A. S. ;
Liu, J. ;
Wright, C. D. ;
Sebastian, A. ;
Kippenberg, T. J. ;
Pernice, W. H. P. ;
Bhaskaran, H. .
NATURE, 2021, 589 (7840) :52-+