A meta-learning network method for few-shot multi-class classification problems with numerical data

被引:0
|
作者
Wu, Lang [1 ]
机构
[1] Beijing Informat Sci & Technol Univ, Sch Appl Sci, Beijing, Peoples R China
关键词
Multi-class classification problem; Few-shot problem; Meta-learning; Convolutional neural network; SUPPORT VECTOR MACHINES; SELECTION;
D O I
10.1007/s40747-023-01281-3
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The support vector machine (SVM) method is an important basis of the current popular multi-class classification (MCC) methods and requires a sufficient number of samples. In the case of a limited number of samples, the problem of over-learning easily occurs, resulting in unsatisfactory classification. Therefore, this work investigates an MCC method that requires only a small number of samples. During model construction, raw data are converted into two-dimensional form via preprocessing. Via feature extraction, the learning network is measured and the loss function minimization principle is considered to better solve the problem of learning based on a small sample. Finally, three examples are provided to illustrate the feasibility and effectiveness of the proposed method.
引用
收藏
页码:2639 / 2652
页数:14
相关论文
共 50 条
  • [41] IMPROVING GENERALIZATION FOR FEW-SHOT REMOTE SENSING CLASSIFICATION WITH META-LEARNING
    Sharma, Surbhi
    Roscher, Ribana
    Riedel, Morris
    Memon, Shahbaz
    Cavallaro, Gabriele
    2022 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS 2022), 2022, : 5061 - 5064
  • [42] Structure-enhanced meta-learning for few-shot graph classification
    Jiang, Shunyu
    Feng, Fuli
    Chen, Weijian
    Li, Xiang
    He, Xiangnan
    AI OPEN, 2021, 2 : 160 - 167
  • [43] Few-shot Node Classification on Attributed Networks with Graph Meta-learning
    Liu, Yonghao
    Li, Mengyu
    Li, Ximing
    Giunchiglia, Fausto
    Feng, Xiaoyue
    Guan, Renchu
    PROCEEDINGS OF THE 45TH INTERNATIONAL ACM SIGIR CONFERENCE ON RESEARCH AND DEVELOPMENT IN INFORMATION RETRIEVAL (SIGIR '22), 2022, : 471 - 481
  • [44] Meta-Learning for Few-Shot NMT Adaptation
    Sharaf, Amr
    Hassan, Hany
    Daume, Hal, III
    NEURAL GENERATION AND TRANSLATION, 2020, : 43 - 53
  • [45] MedOptNet: Meta-Learning Framework for Few-Shot Medical Image Classification
    Lu, Liangfu
    Cui, Xudong
    Tan, Zhiyuan
    Wu, Yulei
    IEEE-ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, 2024, 21 (04) : 725 - 736
  • [46] Task Agnostic Meta-Learning for Few-Shot Learning
    Jamal, Muhammad Abdullah
    Qi, Guo-Jun
    2019 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2019), 2019, : 11711 - 11719
  • [47] META-LEARNING WITH ATTENTION FOR IMPROVED FEW-SHOT LEARNING
    Hou, Zejiang
    Walid, Anwar
    Kung, Sun-Yuan
    2021 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP 2021), 2021, : 2725 - 2729
  • [48] Dual adversarial network with meta-learning for domain-generalized few-shot text classification
    Wang, Xuyang
    Du, Yajun
    Chen, Danroujing
    Li, Xianyong
    Chen, Xiaoliang
    Fan, Yongquan
    Xie, Chunzhi
    Li, Yanli
    Liu, Jia
    Li, Hui
    APPLIED SOFT COMPUTING, 2023, 146
  • [49] Meta Learning for Few-Shot One-Class Classification
    Dahia, Gabriel
    Segundo, Mauricio Pamplona
    AI, 2021, 2 (02) : 195 - 208
  • [50] Multi-Learner Based Deep Meta-Learning for Few-Shot Medical Image Classification
    Jiang, Hongyang
    Gao, Mengdi
    Li, Heng
    Jin, Richu
    Miao, Hanpei
    Liu, Jiang
    IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS, 2023, 27 (01) : 17 - 28