A meta-learning network method for few-shot multi-class classification problems with numerical data

被引:0
|
作者
Wu, Lang [1 ]
机构
[1] Beijing Informat Sci & Technol Univ, Sch Appl Sci, Beijing, Peoples R China
关键词
Multi-class classification problem; Few-shot problem; Meta-learning; Convolutional neural network; SUPPORT VECTOR MACHINES; SELECTION;
D O I
10.1007/s40747-023-01281-3
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The support vector machine (SVM) method is an important basis of the current popular multi-class classification (MCC) methods and requires a sufficient number of samples. In the case of a limited number of samples, the problem of over-learning easily occurs, resulting in unsatisfactory classification. Therefore, this work investigates an MCC method that requires only a small number of samples. During model construction, raw data are converted into two-dimensional form via preprocessing. Via feature extraction, the learning network is measured and the loss function minimization principle is considered to better solve the problem of learning based on a small sample. Finally, three examples are provided to illustrate the feasibility and effectiveness of the proposed method.
引用
收藏
页码:2639 / 2652
页数:14
相关论文
共 50 条
  • [1] A meta-learning network method for few-shot multi-class classification problems with numerical data
    Lang Wu
    Complex & Intelligent Systems, 2024, 10 : 2639 - 2652
  • [2] Meta-Learning for Multi-Label Few-Shot Classification
    Simon, Christian
    Koniusz, Piotr
    Harandi, Mehrtash
    2022 IEEE WINTER CONFERENCE ON APPLICATIONS OF COMPUTER VISION (WACV 2022), 2022, : 346 - 355
  • [3] Fair Meta-Learning For Few-Shot Classification
    Zhao, Chen
    Li, Changbin
    Li, Jincheng
    Chen, Feng
    11TH IEEE INTERNATIONAL CONFERENCE ON KNOWLEDGE GRAPH (ICKG 2020), 2020, : 275 - 282
  • [4] Meta-Seg: A Generalized Meta-Learning Framework for Multi-Class Few-Shot Semantic Segmentation
    Cao, Zhiying
    Zhang, Tengfei
    Diao, Wenhui
    Zhang, Yue
    Lyu, Xiaode
    Fu, Kun
    Sun, Xian
    IEEE ACCESS, 2019, 7 : 166109 - 166121
  • [5] Few-Shot One-Class Classification via Meta-Learning
    Frikha, Ahmed
    Krompass, Denis
    Koepken, Hans-Georg
    Tresp, Volker
    THIRTY-FIFTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, THIRTY-THIRD CONFERENCE ON INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE AND THE ELEVENTH SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE, 2021, 35 : 7448 - 7456
  • [6] Meta-learning triplet contrast network for few-shot text classification
    Dong, Kaifang
    Jiang, Baoxing
    Li, Hongye
    Zhu, Zhenfang
    Liu, Peiyu
    KNOWLEDGE-BASED SYSTEMS, 2024, 303
  • [7] Meta-Learning Classification Network for Few-Shot Polarimetric SAR Images
    Luo, Huiqi
    Jiang, Nana
    Wang, Hui
    Guo, Jiao
    Zhu, Jubo
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2025, 22
  • [8] MEDA: Meta-Learning with Data Augmentation for Few-Shot Text Classification
    Sun, Pengfei
    Ouyang, Yawen
    Zhang, Wenming
    Dai, Xin-yu
    PROCEEDINGS OF THE THIRTIETH INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE, IJCAI 2021, 2021, : 3929 - 3935
  • [9] Few-Shot Directed Meta-Learning for Image Classification
    Ouyang, Jihong
    Duan, Ganghai
    Liu, Siguang
    INTERNATIONAL JOURNAL OF PATTERN RECOGNITION AND ARTIFICIAL INTELLIGENCE, 2023, 37 (01)
  • [10] Unsupervised Meta-Learning for Few-Shot Image Classification
    Khodadadeh, Siavash
    Boloni, Ladislau
    Shah, Mubarak
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 32 (NIPS 2019), 2019, 32