Constructing Gold Single-Atom Catalysts on Hierarchical Nitrogen-Doped Carbon Nanocages for Carbon Dioxide Electroreduction to Syngas

被引:5
|
作者
Jiao, Liu [1 ,2 ]
Mao, Chenghui [1 ,2 ]
Xu, Fengfei [1 ,2 ]
Cheng, Xueyi [1 ,2 ]
Cui, Peixin [3 ]
Wang, Xizhang [1 ,2 ]
Yang, Lijun [1 ,2 ]
Wu, Qiang [1 ,2 ]
Hu, Zheng [1 ,2 ]
机构
[1] Nanjing Univ, Sch Chem & Chem Engn, Key Lab Mesoscop Chem MOE, Nanjing 210023, Peoples R China
[2] Nanjing Univ, Sch Chem & Chem Engn, Jiangsu Prov Lab Nanotechnol, Nanjing 210023, Peoples R China
[3] Chinese Acad Sci, Inst Soil Sci, Key Lab Soil Environm & Pollut Remediat, Nanjing 210008, Peoples R China
基金
中国国家自然科学基金;
关键词
carbon dioxide electroreduction; gold; nitrogen-doped carbon nanocages; single-atom catalysts; syngas; ELECTROCHEMICAL REDUCTION; CO2; ELECTROCATALYSTS; CONVERSION;
D O I
10.1002/smll.202305513
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Precious-metal single-atom catalysts (SACs), featured by high metal utilization and unique coordination structure for catalysis, demonstrate distinctive performances in the fields of heterogeneous and electrochemical catalysis. Herein, gold SACs are constructed on hierarchical nitrogen-doped carbon nanocages (hNCNC) via a simple impregnation-drying process and first exploited for electrocatalytic carbon dioxide reduction reaction (CO2RR) to produce syngas. The as-constructed Au SAC exhibits the high mass activity of 3319 A g-1Au at -1.0 V (vs reversible hydrogen electrode, RHE), much superior to the Au nanoparticles supported on hNCNC. The ratio of H2/CO can be conveniently regulated in the range of 0.4-2.2 by changing the applied potential. Theoretical study indicates such a potential-dependent H2/CO ratio is attributed to the different responses of HER and CO2RR on Au single-atom sites coordinating with one N atom at the edges of micropores across the nanocage shells. The catalytic mechanism of the Au active sites is associated with the smooth switch between twofold and fourfold coordination during CO2RR, which much decreases the free energy changes of the rate-determining steps and promotes the reaction activity. Au single-atom catalyst (SAC) is constructed on hierarchical nitrogen-doped carbon nanocages (hNCNC) support via a mild impregnation-drying process, which exhibits high mass activity for electrocatalytic carbon dioxide reduction reaction(CO2RR)-to-syngas. The smooth switch of Au active site between twofold and fourfold coordination during CO2RR decreases the free energy change of the rate-determining step and promotes the reaction activity.image
引用
收藏
页数:7
相关论文
共 50 条
  • [31] Keeping sight of copper in single-atom catalysts for electrochemical carbon dioxide reduction
    Creissen, Charles E.
    Fontecave, Marc
    NATURE COMMUNICATIONS, 2022, 13 (01)
  • [32] Constructing ample active sites in nitrogen-doped carbon materials for efficient electrocatalytic carbon dioxide reduction
    Wang, Xingpu
    Li, Xueyan
    Ding, Shaosong
    Chen, Yalan
    Liu, You
    Fang, Mingwei
    Xiao, Guozheng
    Zhu, Ying
    NANO ENERGY, 2021, 90 (90)
  • [33] Nitrogen-doped porous carbon nanosheets as a robust catalyst for tunable CO2 electroreduction to syngas
    Gui, Jiaojiao
    Zhang, Kaifu
    Zhan, Xiaowen
    Yu, Yu
    Huang, Tao
    Li, Yunkai
    Xue, Jingyu
    Jin, Xin
    Gao, Shan
    Xie, Yi
    SUSTAINABLE ENERGY & FUELS, 2022, 6 (06) : 1512 - 1518
  • [34] Coordination environment engineering of transition metal doped phthalocyanine single-atom catalysts for carbon dioxide reduction reaction: A DFT study
    Xu, Fang
    Wang, Zhenzhen
    Liu, Zhiyi
    Ma, Aling
    Wu, Dandan
    Wu, Fanghui
    Xu, Hong
    Fan, Guohong
    MOLECULAR CATALYSIS, 2023, 550
  • [35] Single-atom Ni integrated gas diffusion electrode for high performance carbon dioxide electroreduction
    Shi, Run
    Zhang, Tierui
    SCIENCE BULLETIN, 2020, 65 (09) : 696 - 697
  • [36] Ni single-atom sites supported on carbon aerogel for highly efficient electroreduction of carbon dioxide with industrial current densities
    Guo, Hui
    Si, Duan-Hui
    Zhu, Hong-Jing
    Li, Qiu-Xia
    Huang, Yuan-Biao
    Cao, Rong
    ESCIENCE, 2022, 2 (03): : 295 - 303
  • [37] High-Efficiency Electrocatalytic Reduction of N2O with Single-Atom Cu Supported on Nitrogen-Doped Carbon
    Li, Zhe
    Wu, Yunshuo
    Wang, Haiqiang
    Wu, Zhongbiao
    Wu, Xuanhao
    ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2024, 58 (20) : 8976 - 8987
  • [38] On the Sensitivity to Density-Functional Approximations for CO Binding Energies of Single-Atom Catalysts in Nitrogen-Doped Graphene
    Wu, Qin
    Wang, Guangjin
    Liu, Mingjie
    CHEMPHYSCHEM, 2022, 23 (05)
  • [39] Nano-folded Gold Catalysts for Electroreduction of Carbon Dioxide
    Kwok, Kam Sang
    Wang, Yuxuan
    Cao, Michael C.
    Shen, Hao
    He, Zimin
    Poirier, Gerald
    McCandless, Brian E.
    Livi, Kenneth J.
    Muller, David A.
    Wang, Chao
    Gracias, David H.
    NANO LETTERS, 2019, 19 (12) : 9154 - 9159
  • [40] Carbon-Based Single-Atom Catalysts for Advanced Applications
    Gawande, Manoj B.
    Fornasiero, Paolo
    Zboril, Radek
    ACS CATALYSIS, 2020, 10 (03): : 2231 - 2259