Constructing Gold Single-Atom Catalysts on Hierarchical Nitrogen-Doped Carbon Nanocages for Carbon Dioxide Electroreduction to Syngas

被引:5
|
作者
Jiao, Liu [1 ,2 ]
Mao, Chenghui [1 ,2 ]
Xu, Fengfei [1 ,2 ]
Cheng, Xueyi [1 ,2 ]
Cui, Peixin [3 ]
Wang, Xizhang [1 ,2 ]
Yang, Lijun [1 ,2 ]
Wu, Qiang [1 ,2 ]
Hu, Zheng [1 ,2 ]
机构
[1] Nanjing Univ, Sch Chem & Chem Engn, Key Lab Mesoscop Chem MOE, Nanjing 210023, Peoples R China
[2] Nanjing Univ, Sch Chem & Chem Engn, Jiangsu Prov Lab Nanotechnol, Nanjing 210023, Peoples R China
[3] Chinese Acad Sci, Inst Soil Sci, Key Lab Soil Environm & Pollut Remediat, Nanjing 210008, Peoples R China
基金
中国国家自然科学基金;
关键词
carbon dioxide electroreduction; gold; nitrogen-doped carbon nanocages; single-atom catalysts; syngas; ELECTROCHEMICAL REDUCTION; CO2; ELECTROCATALYSTS; CONVERSION;
D O I
10.1002/smll.202305513
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Precious-metal single-atom catalysts (SACs), featured by high metal utilization and unique coordination structure for catalysis, demonstrate distinctive performances in the fields of heterogeneous and electrochemical catalysis. Herein, gold SACs are constructed on hierarchical nitrogen-doped carbon nanocages (hNCNC) via a simple impregnation-drying process and first exploited for electrocatalytic carbon dioxide reduction reaction (CO2RR) to produce syngas. The as-constructed Au SAC exhibits the high mass activity of 3319 A g-1Au at -1.0 V (vs reversible hydrogen electrode, RHE), much superior to the Au nanoparticles supported on hNCNC. The ratio of H2/CO can be conveniently regulated in the range of 0.4-2.2 by changing the applied potential. Theoretical study indicates such a potential-dependent H2/CO ratio is attributed to the different responses of HER and CO2RR on Au single-atom sites coordinating with one N atom at the edges of micropores across the nanocage shells. The catalytic mechanism of the Au active sites is associated with the smooth switch between twofold and fourfold coordination during CO2RR, which much decreases the free energy changes of the rate-determining steps and promotes the reaction activity. Au single-atom catalyst (SAC) is constructed on hierarchical nitrogen-doped carbon nanocages (hNCNC) support via a mild impregnation-drying process, which exhibits high mass activity for electrocatalytic carbon dioxide reduction reaction(CO2RR)-to-syngas. The smooth switch of Au active site between twofold and fourfold coordination during CO2RR decreases the free energy change of the rate-determining step and promotes the reaction activity.image
引用
收藏
页数:7
相关论文
共 50 条
  • [1] Can Metal-Nitrogen-Carbon Single-Atom Catalysts Boost the Electroreduction of Carbon Monoxide?
    Liu, Tianyang
    Wang, Yu
    Li, Yafei
    JACS AU, 2023, 3 (03): : 943 - 952
  • [2] Rare Earth Single-Atom Catalysts for Nitrogen and Carbon Dioxide Reduction
    Liu, Jieyuan
    Kong, Xue
    Zheng, Lirong
    Guo, Xu
    Liu, Xiaofang
    Shui, Jianglan
    ACS NANO, 2020, 14 (01) : 1093 - 1101
  • [3] Transition Metal-Nitrogen-Carbon Single-Atom Catalysts Enhanced CO2 Electroreduction Reaction: A Review
    Ji, Youan
    Du, Juan
    Chen, Aibing
    Gao, Xueqing
    Peng, Mengke
    CHEMSUSCHEM, 2025, 18 (03)
  • [4] Research Progress of Single-atom Catalysts in Photocatalytic Reduction of Carbon Dioxide
    Tao, Yu
    Ou, Honghui
    Lei, Yongpeng
    Xiong, Yu
    CHEMICAL JOURNAL OF CHINESE UNIVERSITIES-CHINESE, 2022, 43 (05):
  • [5] High-performance Pt catalysts supported on hierarchical nitrogen-doped carbon nanocages for methanol electrooxidation
    Jiang, Xiangfen
    Wang, Xuebin
    Shen, Liming
    Wu, Qiang
    Wang, Yangnian
    Ma, Yanwen
    Wang, Xizhang
    Hu, Zheng
    CHINESE JOURNAL OF CATALYSIS, 2016, 37 (07) : 1149 - 1155
  • [6] Metal-Nitrogen-doped carbon single-atom electrocatalysts for CO2 electroreduction
    Huang, Liping
    Li, Wenyao
    Zeng, Min
    He, Guanjie
    Shearing, Paul R.
    Parkin, Ivan P.
    Brett, Dan J. L.
    COMPOSITES PART B-ENGINEERING, 2021, 220
  • [7] Single-atom catalysts boost nitrogen electroreduction reaction
    Zhai, Yanling
    Zhu, Zhijun
    Zhu, Chengzhou
    Chen, Kyle
    Zhang, Xueji
    Tang, Jing
    Chen, Jun
    MATERIALS TODAY, 2020, 38 : 99 - 113
  • [8] ZIF-8 with Ferrocene Encapsulated: A Promising Precursor to Single-Atom Fe Embedded Nitrogen-Doped Carbon as Highly Efficient Catalyst for Oxygen Electroreduction
    Wang, Jinpeng
    Han, Guokang
    Wang, Liguang
    Du, Lei
    Chen, Guangyu
    Gao, Yunzhi
    Ma, Yulin
    Du, Chunyu
    Cheng, Xinqun
    Zuo, Pengjian
    Yin, Geping
    SMALL, 2018, 14 (15)
  • [9] Recent progress in electrochemical reduction of carbon dioxide on metal single-atom catalysts
    Huo, Siming
    Lu, Jessie
    Wang, Xianqin
    ENERGY SCIENCE & ENGINEERING, 2022, 10 (05) : 1584 - 1600
  • [10] Neighboring effect in single-atom catalysts for the electrochemical carbon dioxide reduction reaction
    Wong, Hon Ho
    Sun, Mingzi
    Wu, Tong
    Chan, Cheuk Hei
    Lu, Lu
    Lu, Qiuyang
    Chen, Baian
    Huang, Bolong
    ESCIENCE, 2024, 4 (01):