Molecular mechanism of the effect of Gegen Qinlian decoction on COVID-19 comorbid with diabetes mellitus based on network pharmacology and molecular docking: A review

被引:1
|
作者
Li, Lin-zi [1 ]
Zhou, Cong [2 ]
Wang, Pei [1 ]
Ke, Qing-hua [1 ]
Zhang, Jie [1 ]
Lei, Shan-shan [3 ]
Li, Zhi-qiang [1 ,4 ]
机构
[1] Jingmen Cent Hosp, Jingmen, Peoples R China
[2] AnKang Univ, Sch Med, Ankang, Peoples R China
[3] Zhejiang Acad Tradit Chinese Med, Dept Med, Hangzhou, Peoples R China
[4] Jingmen Cent Hosp, Jingmen 448000, Hubei, Peoples R China
关键词
COVID-19; diabetes mellitus; Gegen Qinlian decoction; molecular docking; network pharmacology; pharmacological mechanism;
D O I
10.1097/MD.0000000000034683
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
To explore the potential mechanism of Gegen Qinlian decoction (GGQL) in the treatment of COVID-19 comorbid with diabetes mellitus (DM) through network pharmacology and molecular docking, and to provide theoretical guidance for clinical transformation research. Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform was used to screen the active compounds and targets of GGQL, the targets of COVID-19 comorbid with DM were searched based on Genecards database. Protein-protein interaction network was constructed using String data platform for the intersection of compounds and disease targets, the Gene Ontology and Kyoto Encyclopedia of Genes and Genomes analysis of the intersection targets was performed using DAVID database. Cytoscape software was used to construct the "compound target-pathway (C-T-P)" of GGQL in the treatment of COVID-19 comorbid with DM, the molecular docking platform was used to complete the simulated docking of key compounds and targets. We obtained 141 compounds from GGQL, revealed 127 bioactive compounds and 283 potential targets of GGQL. Quercetin, kaempferol and formononetin in GGQL play a role by modulating the targets (including AR, GSK3B, DPP4, F2, and NOS3). GGQL might affect diverse signaling pathways related to the pathogenesis of coronavirus disease - COVID-19, AGE-RAGE signaling pathway in diabetic complications, IL-17 signaling pathway, human cytomegalovirus infection and Th17 cell differentiation. Meanwhile, molecular docking showed that the selected GGQL core active components had strong binding activity with the key targets. This study revealed that GGQL play a role in the treatment of COVID-19 comorbid with DM through multi-component, multi-target and multi-pathway mode of action, which provided good theoretical basis for further verification research.
引用
收藏
页数:12
相关论文
共 50 条
  • [21] Exploring the Mechanism of Bufei Decoction in the Treatment of Bronchial Asthma Based on Network Pharmacology and Molecular Docking
    Han, Yong-Guang
    Lv, Xing
    Tan, Ya-Lan
    Ding, Yun-Shan
    Zhang, Chao-Yun
    Bian, Hua
    COMBINATORIAL CHEMISTRY & HIGH THROUGHPUT SCREENING, 2024, : 768 - 780
  • [22] Investigating the Potential Bioactive Components of Qing-Fei-Pai-Du Decoction Against COVID-19 in Diabetes/Diabetic Patients Based on Network Pharmacology and Molecular Docking
    Liu, Yang
    Huang, Huilian
    NATURAL PRODUCT COMMUNICATIONS, 2022, 17 (09)
  • [23] Discussion on the molecular mechanism of Duhuo Jisheng decoction in treating osteoarthritis based on network pharmacology and molecular docking
    Yang, Liu
    Zheng, Senwang
    Hou, Ajiao
    Wang, Song
    Zhang, Jiaxu
    Yu, Huan
    Wang, Xuejiao
    Lan, Wei
    MEDICINE, 2022, 101 (42) : E31009
  • [24] Network Pharmacology Integrated Molecular Docking Reveals the Anti-COVID-19 Mechanism of Xingnaojing Injection
    Yu, Bing
    Ke, Xin-Ge
    Yuan, Chong
    Chen, Peng-Yu
    Zhang, Ying
    Lin, Ning
    Yang, Yan-Fang
    Wu, He-Zhen
    NATURAL PRODUCT COMMUNICATIONS, 2020, 15 (12)
  • [25] Exploring the mechanism of Erchen decoction in the treatment of atherosclerosis based on network pharmacology and molecular docking
    Li, Wenwen
    Zhang, Guowei
    Zhao, Zhenfeng
    Zuo, Yaoyao
    Sun, Zhenhai
    Chen, Shouqiang
    MEDICINE, 2023, 102 (46) : E35248
  • [26] Exploring the mechanism of Suanzaoren decoction in treatment of insomnia based on network pharmacology and molecular docking
    Wang, Shuxiao
    Zhao, Yan
    Hu, Xingang
    FRONTIERS IN PHARMACOLOGY, 2023, 14
  • [27] Network Pharmacology and Molecular Docking of Shiwei Qingwen Decoction Reveal TNF as a Potential Target for Alleviating Mild COVID-19 Symptoms
    Yang, Chen-xiong
    Ma, Shang-zhi
    Zhang, Qian
    Guo, Shu-yun
    Hu, Xiao-di
    Liu, Yan-ju
    Wen, Li
    Zhou, Zhong-shi
    NATURAL PRODUCT COMMUNICATIONS, 2022, 17 (10)
  • [28] Analysis of the Active Components and Mechanism of Three Prescriptions in the Treatment of COVID-19 Via Network Pharmacology and Molecular Docking
    Wang, Fei
    Chen, Jia-Hui
    Liu, Bo
    Zhang, Ting
    NATURAL PRODUCT COMMUNICATIONS, 2021, 16 (09)
  • [29] Mechanism of Simiao Decoction in the treatment of atherosclerosis based on network pharmacology prediction and molecular docking
    Li, Qian
    Chai, Yihui
    Li, Wen
    Guan, Liancheng
    Fan, Yizi
    Chen, Yunzhi
    MEDICINE, 2023, 102 (36) : E35109
  • [30] Study on mechanism of matrine in treatment of COVID-19 combined with liver injury by network pharmacology and molecular docking technology
    Liu, Fangzhou
    Li, Yuanbai
    Yang, Yang
    Li, Meng
    Du, Yu
    Zhang, Yiying
    Wang, Jing
    Shi, Yujing
    DRUG DELIVERY, 2021, 28 (01) : 325 - 342