Spectra for upper triangular linear relation matrices through local spectral theory

被引:1
作者
Alvarez, Teresa [1 ]
Keskes, Sonia [2 ,3 ]
机构
[1] Univ Oviedo, Dept Math, Oviedo 33007, Asturias, Spain
[2] Univ Monastir, Higher Inst Comp Sci Mahdia, Dept Math, Mahdia, Tunisia
[3] Univ Sfax, Fac Sci Sfax, Lab Dynam Syst & Combinatorial, Sfax, Tunisia
关键词
Linear relation matrix; Fredholm spectrum; Drazin spectrum and SVEP; OPERATOR MATRICES; DRAZIN INVERSE; BROWDER SPECTRA;
D O I
10.1007/s00010-023-00993-8
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let X and Y be Banach spaces. When A and B are linear relations in X and Y, respectively, we denote by MC the linear relation in X x Y of the form ((A C) (0 B)), where 0 is the zero operator from X to Y and C is a bounded operator from Y to X. In this paper, by using properties of the SVEP, we study the defect set (Sigma(A) boolean OR Sigma(B))\Sigma(M-C), where Sigma is the spectrum, the approximate point spectrum, the surjective spectrum, the Fredholm spectrum, the Weyl spectrum, the Browder spectrum, the generalized Drazin spectrum and the Drazin spectrum.
引用
收藏
页码:399 / 422
页数:24
相关论文
共 31 条
  • [1] Aiena P., 2004, Fredholm and Local Spectral Theory, with Applications to Multipliers
  • [2] Left-Right Fredholm and Left-Right Browder Linear Relations
    Alvarez, T.
    Fakhfakh, Fatma
    Mnif, Maher
    [J]. FILOMAT, 2017, 31 (02) : 255 - 271
  • [3] Regular linear relations on Banach spaces
    Alvarez, Teresa
    Sandovici, Adrian
    [J]. BANACH JOURNAL OF MATHEMATICAL ANALYSIS, 2020, 15 (01)
  • [4] On the Structure of Essentially Semi-Regular Linear Relations
    Alvarez, Teresa
    Keskes, Sonia
    Mnif, Maher
    [J]. MEDITERRANEAN JOURNAL OF MATHEMATICS, 2019, 16 (03)
  • [5] Quasi-Fredholm and Semi-B-Fredholm Linear Relations
    Alvarez, Teresa
    [J]. MEDITERRANEAN JOURNAL OF MATHEMATICS, 2017, 14 (01)
  • [6] Left- and Right-Atkinson Linear Relation Matrices
    Alvarez, Teresa
    Chamkha, Yosra
    Mnif, Maher
    [J]. MEDITERRANEAN JOURNAL OF MATHEMATICS, 2016, 13 (04) : 2039 - 2059
  • [7] The Local Spectral Theory for Linear Relations Involving SVEP
    Ammar, Aymen
    Bouchekoua, Ameni
    Jeribi, Aref
    [J]. MEDITERRANEAN JOURNAL OF MATHEMATICS, 2021, 18 (02)
  • [8] A note on the spectrum of an upper triangular operator matrix
    Barraa, M
    Boumazgour, M
    [J]. PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2003, 131 (10) : 3083 - 3088
  • [9] Generalized Kato Linear Relations
    Benharrat, Mohammed
    Alvarez, Teresa
    Messirdi, Bekkai
    [J]. FILOMAT, 2017, 31 (05) : 1129 - 1139
  • [10] Weyl's theorem for upper triangular operator matrices
    Cao, XH
    Guo, MZ
    Meng, B
    [J]. LINEAR ALGEBRA AND ITS APPLICATIONS, 2005, 402 : 61 - 73