Computational design and screening of Single-Atom Phthalocyanine-Coordinated transition metal catalysts for the electrochemical cyanide reduction reaction

被引:9
|
作者
Fan, Chen-Hao
Chiu, Kuang-Yen
Hsu, Chih-Wei
Chen, Hui-Lung [1 ]
机构
[1] Chinese Culture Univ, Dept Chem, Taipei 111, Taiwan
关键词
Transition metals; Single-atom catalysts; Phthalocyanine; Electrocatalysts and CNRR; TOTAL-ENERGY CALCULATIONS; OXYGEN REDUCTION; NO REDUCTION; NITROGEN; ELECTROCATALYSTS; MONOLAYERS; HYDROGEN; REMOVAL; ORIGIN;
D O I
10.1016/j.apsusc.2023.158625
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Catalysis facilitated by transition metals (TM), specifically when these are 4 N-coordinated and embedded within a phthalocyanine (Pc) framework, appears to have promising capabilities for the ecologically responsible gen-eration of methane and ammonia, notably under conditions reflecting the ambient environment. The potential benefits of such applications have sparked escalating interest in studying single atom catalysts (SACs) with re-gard to their prospective role in the electrochemical cyanide reduction reaction (CNRR). Through the application of first-principles mechanistic investigations and electrochemical modeling, a variety of TM -Pc catalysts are examined under rigorous systematic exploration to ascertain their stability, activity and selectivity. To specifically address the scenarios, it's typically observed that the NC* model demands increased free energy inputs for CNRR, predominantly leading to the production of CH3NH2. In contrast, the analogous CN* model requires comparatively lower free energy, resulting in a more diversified mix of products, notably CH4 and NH3. Our research highlights the significant role of limiting potentials (UL) and their relationship with a particular kind of descriptor (phi) in crafting volcano plots, thereby elucidating the association between the inherent distinctive properties of various TM -Pc and their promising capabilities in CNRR activities. In a significant finding, the catalysts Sc -Pc, Ti -Pc, Cr -Pc and Fe -Pc are recognized as the most efficient electrocatalysts for CH4 and NH3 production through CNRR. This effectiveness is validated by their remarkable stability, superior reactivity, pronounced selectivity at relatively low limiting potentials (ranging from-0.05 to-0.39 V), and extraordinary Faradaic efficiencies exceeding 91.17 %.
引用
收藏
页数:12
相关论文
共 50 条
  • [31] Computational study of transition metal single-atom catalysts supported on nitrogenated carbon nanotubes for electrocatalytic nitrogen reduction
    Yanyang Qin
    Yan Li
    Wenshan Zhao
    Shenghua Chen
    Tiantian Wu
    Yaqiong Su
    Nano Research, 2023, 16 : 325 - 333
  • [32] Computational screening of single-atom alloys TM@Ru(0001) for enhanced electrochemical nitrogen reduction reaction
    Kour, Gurpreet
    Mao, Xin
    Du, Aijun
    JOURNAL OF MATERIALS CHEMISTRY A, 2022, 10 (11) : 6204 - 6215
  • [33] Computational study of transition metal single-atom catalysts supported on nitrogenated carbon nanotubes for electrocatalytic nitrogen reduction
    Qin, Yanyang
    Li, Yan
    Zhao, Wenshan
    Chen, Shenghua
    Wu, Tiantian
    Su, Yaqiong
    NANO RESEARCH, 2023, 16 (01) : 325 - 333
  • [34] Regulating kinetics and thermodynamics of electrochemical nitrogen reduction with metal single-atom catalysts in a pressurized electrolyser
    Zou, Haiyuan
    Rong, Weifeng
    Wei, Shuting
    Ji, Yongfei
    Duan, Lele
    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2020, 117 (47) : 29462 - 29468
  • [35] Computational Design of Transition Metal Single-Atom Electrocatalysts on PtS2 for Efficient Nitrogen Reduction
    Cai, Lejuan
    Zhang, Ning
    Qiu, Bocheng
    Chai, Yang
    ACS APPLIED MATERIALS & INTERFACES, 2020, 12 (18) : 20448 - 20455
  • [36] Computational screening on azafullerene-supported bifunctional single-atom catalysts for oxygen evolution and reduction reactions
    Xiong, Mo
    Yang, Tao
    PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2024, : 29895 - 29903
  • [37] Recent advances in the rational design of single-atom catalysts for electrochemical CO2 reduction
    Gu, Huoliang
    Wu, Jing
    Zhang, Liming
    NANO RESEARCH, 2022, 15 (11) : 9747 - 9763
  • [38] Rational Design of Novel Single-Atom Catalysts of Transition-Metal-Doped 2D AlN Monolayer as Highly Effective Electrocatalysts for Nitrogen Reduction Reaction
    Shen, Xiaopeng
    Zhang, Qinfang
    MOLECULES, 2024, 29 (23):
  • [39] Tuning Single-Atom Catalysts of Nitrogen-Coordinated Transition Metals for Optimizing Oxygen Evolution and Reduction Reactions
    Hu, Mingyu
    Li, Shunning
    Zheng, Shisheng
    Liang, Xianhui
    Zheng, Jiaxin
    Pan, Feng
    JOURNAL OF PHYSICAL CHEMISTRY C, 2020, 124 (24) : 13168 - 13176
  • [40] Computational screening of single-atom catalysts for direct electrochemical NH3 synthesis from NO on defective boron phosphide monolayer
    Liu, Shize
    Xing, Guanru
    Liu, Jing-yao
    APPLIED SURFACE SCIENCE, 2023, 611