Computational design and screening of Single-Atom Phthalocyanine-Coordinated transition metal catalysts for the electrochemical cyanide reduction reaction

被引:9
|
作者
Fan, Chen-Hao
Chiu, Kuang-Yen
Hsu, Chih-Wei
Chen, Hui-Lung [1 ]
机构
[1] Chinese Culture Univ, Dept Chem, Taipei 111, Taiwan
关键词
Transition metals; Single-atom catalysts; Phthalocyanine; Electrocatalysts and CNRR; TOTAL-ENERGY CALCULATIONS; OXYGEN REDUCTION; NO REDUCTION; NITROGEN; ELECTROCATALYSTS; MONOLAYERS; HYDROGEN; REMOVAL; ORIGIN;
D O I
10.1016/j.apsusc.2023.158625
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Catalysis facilitated by transition metals (TM), specifically when these are 4 N-coordinated and embedded within a phthalocyanine (Pc) framework, appears to have promising capabilities for the ecologically responsible gen-eration of methane and ammonia, notably under conditions reflecting the ambient environment. The potential benefits of such applications have sparked escalating interest in studying single atom catalysts (SACs) with re-gard to their prospective role in the electrochemical cyanide reduction reaction (CNRR). Through the application of first-principles mechanistic investigations and electrochemical modeling, a variety of TM -Pc catalysts are examined under rigorous systematic exploration to ascertain their stability, activity and selectivity. To specifically address the scenarios, it's typically observed that the NC* model demands increased free energy inputs for CNRR, predominantly leading to the production of CH3NH2. In contrast, the analogous CN* model requires comparatively lower free energy, resulting in a more diversified mix of products, notably CH4 and NH3. Our research highlights the significant role of limiting potentials (UL) and their relationship with a particular kind of descriptor (phi) in crafting volcano plots, thereby elucidating the association between the inherent distinctive properties of various TM -Pc and their promising capabilities in CNRR activities. In a significant finding, the catalysts Sc -Pc, Ti -Pc, Cr -Pc and Fe -Pc are recognized as the most efficient electrocatalysts for CH4 and NH3 production through CNRR. This effectiveness is validated by their remarkable stability, superior reactivity, pronounced selectivity at relatively low limiting potentials (ranging from-0.05 to-0.39 V), and extraordinary Faradaic efficiencies exceeding 91.17 %.
引用
收藏
页数:12
相关论文
共 50 条
  • [1] Recent Advances in Phosphorus-Coordinated Transition Metal Single-Atom Catalysts for Oxygen Reduction Reaction
    Ning, Fengzhi
    Wan, Xin
    Liu, Xiaofang
    Yu, Ronghai
    Shui, Jianglan
    CHEMNANOMAT, 2020, 6 (11) : 1601 - 1610
  • [2] First-Principles Insight into the Mechanistic Study of Electrochemical Cyanide Reduction Reaction on Post-Transition Metal Based Single-Atom Catalysts Anchored by Phthalocyanine Nanosheets
    Chiu, Kuang-Yen
    Fan, Chen-Hao
    Hsu, Chih-Wei
    Chen, Hui-Lung
    ACS APPLIED NANO MATERIALS, 2024, 7 (09) : 9909 - 9924
  • [3] First principles screening of transition metal single-atom catalysts for nitrogen reduction reaction
    Bo, Tingting
    Cao, Shiqian
    Mu, Nan
    Xu, Ruixin
    Liu, Yanyu
    Zhou, Wei
    APPLIED SURFACE SCIENCE, 2023, 612
  • [4] Efficient screening of single-atom Porphyrazine-coordinated transition metal catalysts for electrochemical nitric oxide reduction: Insights from first-principles calculations
    Hsu, Chih-Wei
    Chiang, Chun-Ju
    Liu, Kang-Yang
    Chen, Tzu-Hui
    Chen, Hui-Lung
    APPLIED SURFACE SCIENCE, 2025, 681
  • [5] Heterogeneous Single-Atom Catalysts for Electrochemical CO2Reduction Reaction
    Li, Minhan
    Wang, Haifeng
    Luo, Wei
    Sherrell, Peter C.
    Chen, Jun
    Yang, Jianping
    ADVANCED MATERIALS, 2020, 32 (34)
  • [6] Coordination environment engineering of transition metal doped phthalocyanine single-atom catalysts for carbon dioxide reduction reaction: A DFT study
    Xu, Fang
    Wang, Zhenzhen
    Liu, Zhiyi
    Ma, Aling
    Wu, Dandan
    Wu, Fanghui
    Xu, Hong
    Fan, Guohong
    MOLECULAR CATALYSIS, 2023, 550
  • [7] Advancing electrochemical nitrogen reduction: Efficacy of two-dimensional SiP layered structures with single-atom transition metal catalysts
    Li, Qingyu
    Li, Weiguo
    Liu, Diwen
    Ma, Zuju
    Ye, Yuansong
    Zhang, Yanjie
    Chen, Qiang
    Cheng, Zhibing
    Chen, Yiting
    Sa, Rongjian
    JOURNAL OF COLLOID AND INTERFACE SCIENCE, 2024, 668 : 399 - 411
  • [8] Suppression of Hydrogen Evolution Reaction in Electrochemical N2 Reduction Using Single-Atom Catalysts: A Computational Guideline
    Choi, Changhyeok
    Back, Seoin
    Kim, Na-Young
    Lim, Juhyung
    Kim, Yong-Hyun
    Jung, Yousung
    ACS CATALYSIS, 2018, 8 (08): : 7517 - 7525
  • [9] Unraveling electrochemical oxygen reduction mechanism on single-atom catalysts by a computational investigation
    Chen, Jyun-Wei
    Wu, Shiuan-Yau
    Chen, Hsin-Tsung
    INTERNATIONAL JOURNAL OF ENERGY RESEARCH, 2022, 46 (02) : 1032 - 1042
  • [10] Computational Screening of Two-Dimensional Metal-Organic Frameworks as Efficient Single-Atom Catalysts for Oxygen Reduction Reaction
    Qiao, Man
    Xie, Jiachi
    Zhu, Dongdong
    CHEMISTRY-A EUROPEAN JOURNAL, 2023, 29 (33)