GAIN: Decentralized Privacy-Preserving Federated Learning

被引:5
|
作者
Jiang, Changsong [1 ,2 ]
Xu, Chunxiang [1 ,2 ]
Cao, Chenchen [1 ,2 ]
Chen, Kefei [3 ]
机构
[1] Univ Elect Sci & Technol China, Sch Comp Sci & Engn, Chengdu 611731, Peoples R China
[2] Univ Elect Sci & Technol China, Yangtze Delta Reg Inst Huzhou, Huzhou 313001, Peoples R China
[3] Hangzhou Normal Univ, Dept Math, Hangzhou 310027, Peoples R China
基金
中国国家自然科学基金; 国家重点研发计划;
关键词
Privacy-preserving; Federated learning; Decentralization; Smart contract; Blockchain; SECURE;
D O I
10.1016/j.jisa.2023.103615
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Federated learning enables multiple participants to cooperatively train a model, where each participant computes gradients on its data and a coordinator aggregates gradients from participants to orchestrate training. To preserve data privacy, gradients need to be protected during training. Pairwise masking satisfies the requirement, which allows participants to blind gradients with masks and the coordinator to perform aggregation in the blinded field. However, the solution would leak aggregated results to external adversaries (e.g., an adversarial coordinator), which suffers from quantity inference attacks. Additionally, existing pairwise masking-based schemes rely on a central coordinator and are vulnerable to the single-point-of-failure problem. To address these issues, we propose a decentralized privacy-preserving federated learning scheme called GAIN. GAIN blinds gradients with masks and encrypts blinded gradients using additively homomorphic encryption, which ensures the confidentiality of gradients, and discloses nothing about aggregated results to external adversaries to resist quantity inference attacks. In GAIN, we design a derivation mechanism for generation of masks, where masks are derived from shared keys established by a single key agreement. The mechanism reduces the computation and communication costs of existing schemes. Furthermore, GAIN introduces smart contracts over blockchains to aggregate gradients in a decentralized manner, which addresses the single-point of-failure problem. Smart contracts also provide verifiability for model training. We present security analysis to demonstrate the security of GAIN, and conduct comprehensive experiments to evaluate its performance.
引用
收藏
页数:11
相关论文
共 50 条
  • [41] Landscape of machine learning evolution: privacy-preserving federated learning frameworks and tools
    Nguyen, Giang
    Sainz-Pardo Diaz, Judith
    Calatrava, Amanda
    Berberi, Lisana
    Lytvyn, Oleksandr
    Kozlov, Valentin
    Tran, Viet
    Molto, German
    Lopez Garcia, Alvaro
    ARTIFICIAL INTELLIGENCE REVIEW, 2024, 58 (02)
  • [42] Privacy-preserving Federated Learning System for Fatigue Detection
    Mohammadi, Mohammadreza
    Allocca, Roberto
    Eklund, David
    Shrestha, Rakesh
    Sinaei, Sima
    2023 IEEE INTERNATIONAL CONFERENCE ON CYBER SECURITY AND RESILIENCE, CSR, 2023, : 624 - 629
  • [43] SVeriFL: Successive verifiable federated learning with privacy-preserving
    Gao, Hang
    He, Ningxin
    Gao, Tiegang
    INFORMATION SCIENCES, 2023, 622 : 98 - 114
  • [44] A Privacy-Preserving Aggregation Scheme With Continuous Authentication for Federated Learning in VANETs
    Feng, Xia
    Wang, Xiaofeng
    Liu, Haiyang
    Yang, Haowei
    Wang, Liangmin
    IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, 2024, 73 (07) : 9465 - 9477
  • [45] A Verifiable Privacy-Preserving Federated Learning Framework Against Collusion Attacks
    Chen, Yange
    He, Suyu
    Wang, Baocang
    Feng, Zhanshen
    Zhu, Guanghui
    Tian, Zhihong
    IEEE TRANSACTIONS ON MOBILE COMPUTING, 2025, 24 (05) : 3918 - 3934
  • [46] Privacy-Preserving Serverless Computing Using Federated Learning for Smart Grids
    Singh, Parminder
    Masud, Mehedi
    Hossain, M. Shamim
    Kaur, Avinash
    Muhammad, Ghulam
    Ghoneim, Ahmed
    IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, 2022, 18 (11) : 7843 - 7852
  • [47] Privacy-preserving Decentralized Learning Framework for Healthcare System
    Kasyap, Harsh
    Tripathy, Somanath
    ACM TRANSACTIONS ON MULTIMEDIA COMPUTING COMMUNICATIONS AND APPLICATIONS, 2021, 17 (02)
  • [48] BPFL: Blockchain-based privacy-preserving federated learning against poisoning attack
    Ren, Yanli
    Hu, Mingqi
    Yang, Zhe
    Feng, Guorui
    Zhang, Xinpeng
    INFORMATION SCIENCES, 2024, 665
  • [49] Bppfl: a blockchain-based framework for privacy-preserving federated learning
    Asad, Muhammad
    Otoum, Safa
    CLUSTER COMPUTING-THE JOURNAL OF NETWORKS SOFTWARE TOOLS AND APPLICATIONS, 2025, 28 (02):
  • [50] Privacy-preserving federated learning on lattice quantization
    Zhang, Lingjie
    Zhang, Hai
    INTERNATIONAL JOURNAL OF WAVELETS MULTIRESOLUTION AND INFORMATION PROCESSING, 2023, 21 (06)