Some Lie algebras and groups associated to representations of Leibniz algebras

被引:1
作者
Tang, Rong [1 ]
Tan, Youjun [2 ]
Xu, Senrong [3 ]
机构
[1] Jilin Univ, Dept Math, Changchun 130012, Peoples R China
[2] Sichuan Univ, Math Coll, Chengdu 610064, Peoples R China
[3] Jiangsu Univ, Sch Math Sci, Zhenjiang 212013, Peoples R China
关键词
Leibniz algebras; cohomology; derivations; automorphisms; ABELIAN EXTENSIONS; AUTOMORPHISMS;
D O I
10.1142/S0219498825500264
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Given a representation (M; l, r) of a Leibniz algebra g, let D(g, M) (respectively, G(g, M)) be the Lie algebra (respectively, the group) of diagonal derivations (respectively, automorphisms) of the semidirect product g x M. We show that both D(g, M) and G(g, M) have a representation on the cohomology group HL2(g, M). In the case that (M; l, r) arises from an abelian extension of g by M, such representations are applied to construct exact sequences of Wells type for D(g, M) and G(g, M), respectively.
引用
收藏
页数:20
相关论文
共 50 条
  • [21] Representations of Lie conformal algebras related to Galilean conformal algebras
    Han, Xiu
    Wang, Dengyin
    Xia, Chunguang
    COMMUNICATIONS IN ALGEBRA, 2022, 50 (06) : 2427 - 2438
  • [22] Vanishing resonance and representations of Lie algebras
    Papadima, Stefan
    Suciu, Alexander I.
    JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2015, 706 : 83 - 101
  • [23] Representations of Hom-Lie Algebras
    Sheng, Yunhe
    ALGEBRAS AND REPRESENTATION THEORY, 2012, 15 (06) : 1081 - 1098
  • [24] Representations of Hom-Lie Algebras
    Yunhe Sheng
    Algebras and Representation Theory, 2012, 15 : 1081 - 1098
  • [25] Some remarks on semisimple Leibniz algebras
    Gomez-Vidal, S.
    Khudoyberdiyev, A. Kh.
    Omirov, B. A.
    JOURNAL OF ALGEBRA, 2014, 410 : 526 - 540
  • [26] ON LOCALLY DEFINED FORMATIONS OF SOLUBLE LIE AND LEIBNIZ ALGEBRAS
    Barnes, Donald W.
    BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2012, 86 (02) : 322 - 326
  • [27] Galois Groups and Group Actions on Lie Algebras
    Agore, A. L.
    Militaru, G.
    JOURNAL OF LIE THEORY, 2018, 28 (04) : 1165 - 1188
  • [28] An irreducible component of the variety of Leibniz algebras having trivial intersection with the variety of Lie algebras
    Ancochea Bermudez, J. M.
    Campoamor-Stursberg, R.
    LINEAR & MULTILINEAR ALGEBRA, 2014, 62 (11) : 1450 - 1459
  • [29] Representations and deformations of 3-Hom-?-Lie algebras
    Peyghan, Esmaeil
    Gezer, Aydin
    Bagheri, Zahra
    Gultekin, Inci
    JOURNAL OF ALGEBRA AND ITS APPLICATIONS, 2023, 22 (03)
  • [30] Solvable Leibniz algebras with quasi-filiform Lie algebras of maximum length nilradicals
    Muratova, Kh. A.
    Ladra, M.
    Omirov, B. A.
    Sattarov, A. M.
    COMMUNICATIONS IN ALGEBRA, 2020, 48 (08) : 3525 - 3542